Prospects and aspects of deployment of transportable small modular reactors on the example of SHELF-M

21st INPRO Dialogue Forum on the Deployment of Small Modular Reactor Projects and Technologies to Support the Sustainable Development Goals

Stepan Zaitsev, Denis Kulikov, Vladimir Kudinov, Stanislava Senatorova, Ekaterina Mukhanina

JSC NIKIET, Moscow, Russian Federation

28 August - 1 September, 2023, Saint Petersburg
Grounds for the development of an SMR project based on the SHELF-M

- Strategy for the development of the Arctic zone of the Russian Federation and ensuring national security for the period up to 2035
- Federal project "New Nuclear Power, Including Small Nuclear Reactors for Remote Areas"
- Seventh Sustainable Development Goal - Affordable and clean energy
SHELF-M Power capsule
The main provisions of the SMR project on the basis of the SHELF-M

- Proven reactor technology with a two-circuit cooling system
- Integrated pressurized water reactor
- Passive safety systems
- Physical barrier system
- Digital design
- Digital twin technology
- Compact placement of primary circuit equipment
- Factory production and testing of the reactor module
Main technical characteristics of SHELF-M

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Valuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power, MW</td>
<td>35</td>
</tr>
<tr>
<td>Electric power, MW</td>
<td>10</td>
</tr>
<tr>
<td>Reactor type</td>
<td>Integral PWR</td>
</tr>
<tr>
<td>Coolant/moderator</td>
<td>Light water</td>
</tr>
<tr>
<td>Primary circulation</td>
<td>Natural (for 20% of rated power) / forced</td>
</tr>
<tr>
<td>Fuel type</td>
<td>Cermet (UO$_2$ in silumin matrix)</td>
</tr>
<tr>
<td>Fuel enrichment</td>
<td>Up to 20%</td>
</tr>
<tr>
<td>Fuel cycle, years</td>
<td>8</td>
</tr>
<tr>
<td>Height/diameter of the power capsule, m</td>
<td>11/8</td>
</tr>
<tr>
<td>Weight of the power capsule together with the reactor, t</td>
<td>370</td>
</tr>
<tr>
<td>Service life of non-replaceable equipment, years</td>
<td>60</td>
</tr>
</tbody>
</table>
Calculation justification of reliability and operability

In order to confirm the reliability and operability, neutron-physical, thermal-hydraulic, strength and radiation variant calculations were carried out, which showed:

- fuel cycle 80000 eff. hours
- radiation resistance of all construction materials during the entire service life of the reactor plant
- biological shielding ensures that radiation levels in all rooms of the NPP comply with radiation safety standards
- compliance of the core and reactor structural elements with the safety requirements
Aspects of the placement of SHELF-M

Transportation by various modes of transport

Exclusion of uncontrolled access to nuclear materials during transportation and operation of reactor unit

NPP site placement close to the consumer

No need for a cooling pond

Wide operating temperature range

Multi-purpose use

High level of autonomy

Possibility to increase the capacity of NPP
Prospects for the placement of SMRs on the basis of the SHELF-M

➢ Providing electricity to decentralized regions
➢ Support for industrial enterprises
➢ The cost of a kilowatt hour of electricity about $0.16 - $0.25*
➢ The project is on engineering design stage
➢ The FOAK power unit site will be near Sovinoe gold deposit in Chukotka Autonomous Okrug
➢ The commissioning of the first of a kind power unit is scheduled for 2030
➢ Serial power unit production will start in 2032

*Based on July 2023 dollar exchange rate
Regulation and licensing

➢ Licensing of a first of a kind power unit in accordance with the requirements for nuclear power plants
➢ Adjustment of existing rules and regulations in the field of nuclear energy use
➢ Lack of a regulatory framework for transportable nuclear power plants
➢ Regulation of transport safety
Thank you for your attention!

Stepan Zaitsev
Reactor Design Team leader of the SMR Project Department
JSC NIKIET
zaitsev.sb@nikiet.ru
August 28 – September 1, 2023, St. Petersburg