Summary of the Common User Considerations (CUC) by Developing Countries for Future NE Systems

(IAEA NES No NP-T-2.1, May 2009)

By Ray Sollychin
(Member of CUC Team, 2006-2008)
Outline

• Background on CUC
• CUC Process
• CUC the “Requirements” – Features Desired by Technology Users
• CUC the “Insight” – Summary of Users Rationales for the “Requirements”
Background on CUC

- In response to a GC resolution;
- Objective: to develop common user criteria by developing states for SMR, including infrastructure development, domestic legal/regulatory frameworks, disposal of spent fuel and flexible financing.
- Two stages: (1) Establishing the CUC; (2) Refining it and defining possible actions;
- User countries are defined as:
 - IAEA MSs;
 - GDP per capita < US$10,725/year;
 - Expressed interest to build new/additional NPP, but without ongoing large scale NPP projects.
Background on CUC (continued)

- **Study:**
 - 54 countries identified
 - 7 countries interviewed
 - 200 experts from 35 countries participated in report development

- **Observations:**
 - High degree of commonality
 - Some areas of divergence
 - Strategic planning process varied but existing technology tended to drive options

54 countries addressed by the project have 2 attributes – they are developing countries and are interested in potential use of nuclear energy systems
CUC Process

• Dec 2006 - Action Plan endorsed by SCM;
• Jan 2007 - Defined user countries, Prepared questionnaire;
• Feb 2007 - 1st CM: Reviewed the above, identified representative (+ alternative) countries to be interviewed;
• Feb to Jun 2007 - Organized visits to representative countries;
• May to Aug 2007 - Visits to representative countries: Indonesia, Belarus, Lithuania, Egypt, Bangladesh, Mexico and Malaysia;
• Sep 2007 - Drafted Sections 3 & 4 of CUC report;
• Sep 2007 - 2nd CM: Reviewed results, discussed workshop plan including short questionnaire, discussed Stage 2
• Oct 2007 - Collect filled questionnaires, completed CUC draft report;
• Nov 2007 - CUC Workshop participated by 33 user countries and 8 ‘friends of nuclear’ countries (Canada, China, France, India, Japan, Korea, Russia, USA);
• Dec 2007 to Apr 2008: Finalized CUC report;
• Mar 2008: 3rd CM: Reviewed CUC report being finalized, discussed Stage 2.
Features Desired by Technology Users

Components of CUC “Requirements”:

1. Economics and Financing;
2. Infrastructure and Implementation;
3. Nuclear Safety;
4. Environment, Resources and Waste Management;
5. Proliferation Resistance;
6. Physical Protection;
Features Desired by Technology Users

Some Key Points:

- Opportunity to improve national capability
- Proven technology
- Take advantage of operating experience in Technology-Holder Countries
- Same level of safety, security and proliferation resistance as in Technology-Holder countries
- Support for financing, risk allocation
- Less uncertainty in cost data;
- Help from vendor countries’ regulators, support organizations
Some Key Points (continued):

- Sustained operation (availability of fuel, parts, service, know-how)
- Spent fuel:
 - Join Technology-Holders in the process of addressing the issues associated with the back-end of the fuel cycle
 - Fuel take-back option
General Rationales for “Requirements”

- Majority of requirements are driven by similar concerns and general desires;
- Most important one is minimization of risks associated with nuclear power program:
 - Major investment;
 - Long-term commitment
- Also important are:
 - Be treated equally/access to same technologies;
 - Continued improvement of national capabilities
Desire to Rely on Established Experience

- Risks due to ‘inexperience’ in technology;
- Desire to have those with more experience (supplier) to share more risk:
 - Turnkey contract in 1st project;
 - NPP product proven prior to introduction:
 - Proven design: systems, components, methodology/codes and licensing;
 - Assistance to establish experience timely
Desire to Improve National Capabilities

- A common need to have more confidence in technology through participation + gradual improvement in capabilities:
 - Utilization of local infrastructure and skill-sets;
 - Involvement in project execution;
 - Training of essential staff for running the plants;
 - Information to help understand the technology;
 - Systematic transfer of technology & know-how;
 - Step-wise increase in national participation.
Desire to have Sustained Operation Over Lifetime

- Concern for possible interruption to NPP operation
 - Perturbation in international market or politics perceived to be beyond the control of the user country;
- Desire to have technology supplier to share responsibility for sustainable operation:
 - Assurance of fuel supply;
 - Assurance of critical components and spare-parts;
 - Assurance of service and supply of technical know-how;
 - Maximization of self-reliance to a practical limit.
Concern Related to Safety and Public Acceptance

• Requirements mainly associated with unfamiliarity with technology;
• Willingness to rely on supplier’s and international assurance that the current technologies are safe;
 • Design proven-ness is essential: no need to require ‘safer’ design;
 • Supplier has more experience and established practices and analysis approach/methodology
 ➢ Have been licensed or licensable in country of origin;
 ➢ Meet IAEA Nuclear Safety Standards and comply with national regulation.
Minimum electricity generation cost is generally not the main nor the only objective for introducing NPP;
But must be competitive with best alternative sources of energy locally available
General perspective that nuclear electricity is competitive;
Concern is more related to availability and credibility of relevant information for:
Detailed comparison with other energy sources;
Supporting decisions and selection of options;
Need relevant cost breakdown;
Desire to utilize local facilities and human resources.
Concern Related to Spent Fuel Management

• An important concern but no strong requirement for ultimate solution in the short-term:
 • Realization that it is not feasible;
 • Most countries are willing to join the ‘expert’ countries to ‘wait and see’;
 ➢ Effective intermediate spent fuel storage;
• Some are more concerned with viability of permanent storage in own country:
 ➢ Spent fuel take-back option;
• Some believe in the right to pursue closed fuel cycle option in the future if/when necessary:
 ➢ Flexible fuel in future.
Other Concerns and Desires

• Mainly common-sense type. Examples:
 ➢ Short/certain project duration;
 ➢ Support for financing;
 ➢ Good performance and ease of operation/maintenance;
 ➢ Maximum size within constraints of grid characteristics and national capability.
Final Remarks - Personal Observations

- Risks can probably be minimized with the introduction of SMR without users’ involvement in non-power-generation fuel cycle activities:
 - Risk due to large size of investment - SMR’s smaller sizes may reduce/eliminate many concerns;
 - Risk due to long-term commitment - can be minimized with ‘Without On-site refuelling’ feature and without enrichment, fuel fabrication and spent fuel management
- Lack of understanding by the vendors/designers on the aspiration & priorities of user countries. Example:
 - Micro-economic decision approach (low unit energy cost) vs. Macro-economic decision approach (opportunity cost).
Personal Observations (continued)

- Major challenges to user countries:
 - Current NPP products are too large and hence unaffordable;
 - Need to spend too much resource on infrastructure during a short-time (current nuclear countries established the infrastructure gradually over long time period);
 - These + proliferation concern have prevent them to enter the exclusive ‘nuclear club’;

- SMR will not be viable nor useful to user countries if continue to follow conventional NPP technology development approach - Need a shift in paradigm:

 "Food for thought" presentation during coffee break, 15:30 - 15:50, Monday October 10, 2011