SMART
An Early Deployable Integral Reactor for Multi-purpose Applications
Contents

- SMR Perspectives
- Design & Safety Features of SMART
- Current (licensing) Status
- Summary

SMART: System-integrated Modular Advanced Reactor
Contents

- SMR Perspectives
- Design & Safety Features of SMART
- Current (licensing) Status
- Summary
SMR– Perspectives

- Small & Medium Reactors (SMR) offer Several Advantages
 - Enable enhanced safety features (robustness)
 - Easier implementation of passive safety features
 - Suitable for isolated or small electrical grids
 - Lower capital cost per unit
 - Small initial investment and short construction period reduces financial risks
 - Makes nuclear energy feasible for more utilities and energy suppliers
 - Multi-purpose application (co-generation flexibilities)
 - Just-in-time capacity addition, Short construction time
 - Enable gradual capacity increase to meet electric demand growth

- Many realizable SMR concepts proposed are based on the LWR technology and reflection of the past experiences
 - By eliminating the cause of accidents (initiators), instead of controlling accidents (ex. DBAs)
 - Integral PWR fits into these logical requirements
SMR– Perspectives

- **SMR Prospects**
 - Replacement for retiring fossil plants
 - reduces greenhouse gases
 - Non-electrical uses
 - desalination, process heat, etc
 - Multiple units permit generation with less impact by planned outages

- **User Expectations (Requirements)**
 - Proven Technology - Licensing Requirements and Conformance
 - Safety
 - Plant Performance and Applications
 - Economics and Financing
 - Proliferation Resistance and Physical Protection
 - Assurance of Supply
Economical Aspects (Competitiveness)

- No single SMR can compete with large NPP
 ⇒ Multi-modular units
- Design/Equipment Simplification
 ● Modular construction approach
 ● Easier to adopt passive features (elimination of active components)
- Shorter Construction Time
- Multiple Units per Plant
 ● Enable facilities/equipments sharing
 ● Reduces site-related costs
 ● Permit generation with less impact by planned outages
- Just-in-time Capacity Addition (Scalability)
 ● Enable gradual capacity increase to meet energy demand
Contents

- SMR Perspectives
- Design and Safety Features of SMART
- Current (licensing) Status
- Summary
Basic Concept of SMART

330MW\textsubscript{th} Integral PWR
Electricity Generation, Desalination and/or District Heating

- **Plant Data**
 - Power: 330 MWt
 - Water: 40,000 t/day
 - Electricity: 90 MWe

- **System-integrated Modular Advanced Reactor**

 - Electricity and Fresh Water Supply for a City of 100,000 Population
 - Suitable for Small Grid Size or Localized Power System
Application of SMART (1)

Desalination System

- **4 Units of MED-TVC to produce 40,000 ton/day + 90 Mwe**
- **Steam supplied through turbine extraction**
- **Steam Transformer - additional protection of possible radioactive contamination**

Schematic Diagram of MED-TVC

Steam Transformer
District Heating

- 147 Gcal/h of Heat Supply to Local Area Heating + 82 MWe
- Supply of Electricity and 85°C Hot Water for 100,000 Populations
 - Based on Korean Peak Electric Power and Heat Usages

Expected design point for 85 °C hot water
SMART
System-integrated Modular Advanced Reactor

Integral Design
- Integrated Primary System
- Inherent Safety: Passive Residual Heat Removal
- Advanced Digital Man-Machine Interface System

SMART
(System-integrated Modular Advanced Reactor)

- Enhanced Reactor Safety: No LBLOCA
- Flexible Applications: Electricity, Heat
- Early Deployment: Proven Technology

Loop Type PWR

Pressurizer
Canned Motor Pump
Helical Steam Generator
Core
Integral PWR – SMART

- **330 MWt (100 MWe) nominal output**
 - Small core (57 fuel assemblies) and source term
 - Unit output enough to support electricity, water and heat demand for population of 100,000

- **Integral PWR with no large RPV penetrations**
 - Less than 2” penetrations
 - In-vessel Pressurizer, Steam Generator and RCP (Canned Motor Pump)

- **Inherent Safety**
 - Elimination of LB-LOCA by design
 - No core uncovery during SB-LOCA
 - Large Coolant Inventory per MW
 - Low Power Density (~2/3 of Large PWR)

- **Performance proved Fuel**
 - Standard 17x17 UO₂ (< 5 w/o U_{235}) w/reduced height (2m)
 - Advanced Grid / IFM design
 - Peak Rod Burnup < 60 GWd/t
 - Performance proved @ operating PWRs

- **Improved Core Operability**
 - Cycle length: 1,000 EFPD (~ 3 years)
 - Proven reactivity control measures
 - CRDM, Soluble Boron, BP
<table>
<thead>
<tr>
<th>Type of Reactor</th>
<th>Integral PWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Power</td>
<td>330 MWth</td>
</tr>
<tr>
<td>Electric Power</td>
<td>100 MWe (in case of desalination: 90 MWe)</td>
</tr>
<tr>
<td>Design Lifetime</td>
<td>60 years</td>
</tr>
<tr>
<td>Core Thermal Margin</td>
<td>> 15 %</td>
</tr>
<tr>
<td>Fuel Type</td>
<td>17x17 Square</td>
</tr>
<tr>
<td>Effective Core Height</td>
<td>2 m</td>
</tr>
<tr>
<td>Fuel Material</td>
<td>UO₂ Ceramic (< 5 w/o)</td>
</tr>
<tr>
<td>Number of Fuel Assembly</td>
<td>57</td>
</tr>
<tr>
<td>Refueling Period</td>
<td>36 months</td>
</tr>
<tr>
<td>Reactivity Control</td>
<td>Control Rod Assembly, Soluble Boron</td>
</tr>
<tr>
<td>Steam Generator</td>
<td>Helically Coiled, Once-Through Type (8)</td>
</tr>
<tr>
<td>Reactor Coolant Pump</td>
<td>Glandless Canned Motor Pump (4)</td>
</tr>
<tr>
<td>Control Rod Drive Mechanism</td>
<td>Magnetic-Jack Type (25)</td>
</tr>
</tbody>
</table>
System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Thermal Power (MWth)</td>
<td>330</td>
</tr>
<tr>
<td>Design Pressure/Temperature (MPa/°C)</td>
<td>17/360</td>
</tr>
<tr>
<td>Operating Pressure (MPa)</td>
<td>15</td>
</tr>
<tr>
<td>SG Inlet Temperature (°C)</td>
<td>323</td>
</tr>
<tr>
<td>SG Outlet Temperature (°C)</td>
<td>295.7</td>
</tr>
<tr>
<td>Flow Rate (kg/sec)</td>
<td>2090</td>
</tr>
<tr>
<td>Steam Pressure (MPa)</td>
<td>5.2</td>
</tr>
<tr>
<td>Steam Temperature (°C)</td>
<td>298</td>
</tr>
<tr>
<td>Steam Superheating (°C)</td>
<td>30</td>
</tr>
<tr>
<td>SG Tube Material</td>
<td>Inconel 690</td>
</tr>
<tr>
<td>SG Tube I.D/O.D (mm)</td>
<td>12/17</td>
</tr>
<tr>
<td>Tube Plugging Margin (%)</td>
<td>10</td>
</tr>
</tbody>
</table>
Nuclear Steam Supply System

◆ General
 • Thermal/Electric Power: 330 MWt/100 MWe
 • Design Life Time: 60 Years

◆ Design Characteristics
 • Integrated Primary System
 • Passive Residual Heat Removal System
 • Simplified Safety Injection System
 • Long Refueling Cycle: 36 months
 • Full Digital MMIS Technology
Control & Protection (Digital MMIS)

- **Fully Digitalized I&C System : DSP Platform**
 - 4 Channel Safety/Protection System and Communication
 - 2 Channel Non-Safety System

- **Advanced Human–Interface Control Room**
 - Ecological Interface Design
 - Alarm Reduction
 - Elastic Tile Alarm
Balance of Plant

- **Electric System**
 - 100% x 2 Emergency DG & Alternate AC Power (Water-tight Bldg)
 - Emergency Battery to Vital Systems for 10 hrs

- **Containment Building**
 - Passive Auto-catalytic Hydrogen Recombiners (12)
 - Containment Spray System (2 Trains)
 - Water source from Sump integrated IRWST
 - Containment Isolation System
 - Aircraft Impact Proof

- **Auxiliary Building**
 - Quadrant Wrap-around
 - Fuel Storage Inside
 - Aircraft Impact Proof
 - Single Base-mat with Containment (Seismically Resistant)
Safety Consideration

- **Core Damage Frequency**
 - less than 10^{-6} / RY

- **Containment Failure Frequency**
 - less than 10^{-7} / RY

- **Operator Action Time**
 - at least 30 min.

- **Capacity for Station Blackout**
 - EDG(2), AAC, Battery

- **Severe Accident Mitigation Capability**
 - In-Vessel Retention, ERVC, PARS, Containment Spray System

- **Seismic Design**
 - 0.3g SSE
CDF Contributor (Full Power Internal Events)

%SLOCA, 35.3
%RVR, 17.2

%TLOCCW, 4.0
%GTRN, 4.4
%SGTR, 6.2
%LOFW, 7.7
%LSSB, 7.9
%ATWS, 11.4
%RCPE, 2.2
%ISLOCA, 1.0
%LOCCW, 0.0
%SGHR, 0.6
%SLBU, 0.2
%LODC, 0.0
%LOOP, 1.7
%LOKV, 0.1
%LODC, 0.0
%LOCCW, 0.0
Safety Features

- **Inherent Safety**
 - No Large Break: vessel penetration < 2 inch
 - Large Primary Coolant Inventory per MW
 - Low Power Density (~2/3)
 - Large PZR Volume for Transient Mitigation
 - Low Vessel Fluence (1.1 x 10^{14} n/cm^2)
 - Large Internal Cooling Source (Sump-integrated IRWST)

- **Engineered Safety Features**
 - Passive Residual Heat Removal System (50% x 4 train)
 - Natural Circulation
 - Replenishable Heat Sink (Emergency Cooling Tank)
 - Safety Injection System (100% x 4 train)
 - Direct Vessel Injection from IRWST
 - Shutdown Cooling System (100% x 2 Train)
 - Containment Spray System (2 Train)

- **Severe Accident Management**
 - In-Vessel Retention and ERVC
 - Passive Hydrogen Control (PARs)
Safety Systems of SMART

- Passive Residual Heat Removal System (4 trains)
- Safety Injection System (4 trains)
- Shutdown Cooling System (2 trains)
- Containment Spray System
- Emergency Diesel Generator (2)
- Alternate AC
- Hydrogen Control
 - Passive auto-catalytic recombiner (12)
- Counter Measure : Severe Accident
 - Large inventory of reactor coolant
 - Large containment volume
Passive Residual Heat Removal System

- passively removes the residual heat from the secondary side of SG through natural circulation (10 m height difference btw SG and Hx)
- cools down the temperature of RCS to 200℃ within 36 hours through removing the core decay heat and the sensible heat of reactor coolant after the reactor tripped from any power level
SMART is secured against Station Blackout

- 2 Water-tight EDG and AAC insures Emergency Power Supply
- If EDG/AAC fails, Fully Passive (No Electricity) PRHRS insures Safe Shutdown (PRHRS Heat Sink can be Replenished)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>EDG/AAC</th>
<th>PRHRS</th>
<th>Grace Time*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>All 4 Trains</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>All 4 Trains</td>
<td>20 Days**</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>2 Trains</td>
<td>10 Days**</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>No</td>
<td>2.6 Days</td>
</tr>
</tbody>
</table>

* Grace Time : the Time allowed for Operator’s Action before Core Damage
** No Replenishment of PRHRS Heat Sink Assumed

Hydrogen Control

- PAR (12) passively removes Hydrogen in Containment, if any
- Large containment volume
 - Max. hydrogen contents assuming 100% fuel clad oxidation < 7 %
 : Hydrogen explosion does not occur
Post Fukushima Action Items

<table>
<thead>
<tr>
<th>No.</th>
<th>Action Items</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automatic RX Shutdown @Earthquake >0.18g</td>
<td>To be resolved @SSAR</td>
</tr>
<tr>
<td>2</td>
<td>Strengthen Aseismic Design for MCR Panel</td>
<td>Done</td>
</tr>
<tr>
<td>3</td>
<td>Provide Water-tight Door & Drain Pump</td>
<td>To be resolved @SSAR</td>
</tr>
<tr>
<td>4</td>
<td>Secure Mobile Generator and Battery</td>
<td>To be resolved @SSAR</td>
</tr>
<tr>
<td>5</td>
<td>Improve Alternate EDG Design Criteria</td>
<td>To be resolved @PSAR</td>
</tr>
<tr>
<td>6</td>
<td>Fix-up Extra Transformer Anchor Bolt</td>
<td>To be resolved @PSAR</td>
</tr>
<tr>
<td>7</td>
<td>Prepare Measure to Cool-down SFP</td>
<td>To be resolved @SSAR</td>
</tr>
<tr>
<td>8</td>
<td>Prepare Anti-Flood & Recovery for Final Heat Removal</td>
<td>To be resolved @PSAR</td>
</tr>
<tr>
<td>9</td>
<td>Provide Passive Autocatalytic Recombiner</td>
<td>Done</td>
</tr>
<tr>
<td>10</td>
<td>Provide Depress. or Purge on RX. Bldg</td>
<td>N/A for SMART</td>
</tr>
<tr>
<td>11</td>
<td>Provide External Injection Path on SI</td>
<td>To be resolved @SSAR</td>
</tr>
</tbody>
</table>
Contents

- SMR Perspectives
- Design & Safety Features of SMART
- Current (Licensing) Status
- Summary
Technology Validation & Standard Design Approval

- **2009**
 - Separate Effect Tests
 - Design Tools & Methods
 - Integral Effect Tests (VISTA)

- **2010**
 - Licensing Support

- **2011**
 - Key Safety & Performance Validation
 - Standard Design, Licensing Q&A
 - SSAR, CDM, EOG

- **2012~2017**
 - Pre-Application Review
 - Regulatory Review
 - Pre-Application SDA Application
 - Standard Design Approval

FOAKE Plant Construction

- **Plan Preparation Underway**
- **Construction**

SMART-ITL

- Integral System Confirmation Tests
Current Status

- **Technology Validation**
 - Separate Effect Tests: 20 tests completed
 - Integral Effect Tests: small scale SBLOCA tests completed

- **Standard Design**
 - CDM, SSAR, EOG and related documents were submitted for the application of Standard Design Approval: Dec. 2010

- **Licensing**
 - Pre-application Review (by KINS): 2010
 - SDA Licensing Review (by KINS): 2011
 - Standard Design Approval (Target): End of 2011
Licensing Milestone toward SDA

- **Pre-Application Review**: completed (2010)
 - System Description, Preliminary Safety Analysis Reports, Tools & Methods, Validation Test Plan, etc. (~ 800 Q&A’s)

- **Application of Standard Design Approval** (Dec. 2010~)
 - Certified Design Material, SSAR, EOG and related documents, and 22 Technical Reports were submitted.
 - **Document Conformance Evaluation** (Feb. 2011)
 - 190 comments demanding supplementary / additional materials
 - **1st Round Questionnaire** (April, 2011)
 - 932 Q&A’s
 - **2nd Round Questionnaire** (July, 2011)
 - 470 Q&A’s
 - **Nuclear Safety Committee Review**: Nov. 2011
 - **(target) Standard Design Approval**: End of 2011
Project Organization – SMART SDA

Government

KAERI

KEPCO Consortium

SMART Development

Technology Validation

NSSS Design

Fuel Design

BOP Design

Component Design

- Technology Validation: $60M
- Standard Design: $85M
Partnership for the SMART Project

- **KEPCO Consortium**
 - Project Management, Funding, Marketing Evaluation
 - Leads the feasibility study on the construction of a FOAKE plant
 - site survey, social acceptance, economics, etc

- **KAERI**
 - Korea Atomic Energy Research Institute

- **KEPCO Consortium**
 - Daewoo Engineering
 - Heavy Industries
 - SAMCHANG
 -Energy
 - posco
 - Daewoo Engineering
Contents

- Introduction
- History and Status of the SMART Project
- Design Features
- Safety of the SMART
- Summary
Deployment Consideration

- Domestic Construction Plan of Reference Plant
 - Construction Planning (2012)
 - Site Survey (2013~2015)
 - Construction of Reference Plant (2015~2019 : FOAK)

- Design Improvement for Construction (2012~2014)
 - Application of Fukushima Daiichi Action Plans
 - Prepare Automatic Reactor Shutdown @ Earthquake (> 0.18g)
 - Enforce Seismic and Tsunami Criteria
 - Prepare External Injection Path on the Safety Injection Line
 - Improve Cooling Performance of Spent Fuel Pool
 - Prepare Mobile Generation Facility & Connection Points
 - Optimization of BOP System
 - Arrangement & Layout
Construction

- **Footprint**
 - 300 x 300 m for Electricity System
 - 300 x 200 m for Desalination System

- **Boundaries**
 - EAB : Circle of R300 m
 - EPZ : 1.5 km
 - LPZ : 2 km

- **Construction Period**
 - 3 years (n-th plant)

- **Economics (as of 2007)**
 - Construction Cost : $5,000 ~ $6,000/kWe
 - Levelized Generation Cost : ~ 6.1 ¢/kWh
Summary

- SMR can provide Flexible Solutions to energy, water & environmental issues

- Certified SMART Design will be available for commercial deployment

- SMART is a viable option for early deployment of SMR
 - Enhanced safety and operability by advanced design features
 - Low licensing risks by using proven and validated technologies
 - Flexible applications for both electricity and heat supply
 - KEPCO consortium with wide NPP experiences strengthens the viability of SMART
Thank you for attention!
SMART
System-integrated Modular Advanced ReacTor

Integral PWR – SMART

- **330 MWt (100 MWe) nominal output**
 - Small core (57 fuel assemblies) and source term
 - Unit output enough to support electricity, water and heat demand for population of 100,000

- **Integral PWR with no large RPV penetrations**
 - Less than 2” penetrations
 - In-vessel Pressurizer, Steam Generator and RCP (Canned Motor Pump)

- **Inherent Safety**
 - Elimination of LB-LOCA by design
 - No core uncovery during SB-LOCA
 - Large Coolant Inventory per MW
 - Low Power Density (~2/3 of Large PWR)

- **Performance proved Fuel**
 - Standard 17x17 UO₂ (< 5 w/o U_{235}) w/reduced height (2m)
 - Advanced Grid / IFM design
 - Peak Rod Burnup < 60 GWd/t
 - Performance proved @ operating PWRs

- **Improved Core Operability**
 - Cycle length: 1,000 EFPD (~ 3 years)
 - Proven reactivity control measures
 - CRDM, Soluble Boron, BP
Fuel & Core

- **Fuel**
 - Proven 17 x 17 UO2 Ceramic Fuel with Reduced Height (2m)
 - Peak Rod Burn-up < 60GWD/MTU

- **Core**
 - 57 Fuel Assemblies
 - Fuel Cycle Length : 3 years
 - Availability Factor : 95%

- **Reactivity Control**
 - Magnetic-Jack type CRDM
 - Soluble Boron
 - Burnable Poison

- 60 years of on-site Spent Fuel Storage
Reactor Vessel Assembly

- **Primary Components in RPV**
 - 8 helical once-through SGs
 - 4 canned motor pumps
 - Internal steam pressurizer
 - 25 magnetic jack type CRDMs

- **RPV**
 - Max 6.5m (D) x 18.5m (H)
 - Material: SA508 Grade 3, Class 1
RPV and Internals

SMART
System-integrated Modular Advanced Reactor

Flow Skirt
Upper Guide Structure
Core Support Barrel
CRDM (25)
PSV Nozzle
ICI Nozzle
ICI Support Structure

In-vessel Steam Pressurizer

Flow Mixing Header Assembly
Helically-coiled Steam Generator (8)

Canned Motor Pump (4)
Component Cooling
Sealing Can
Shaft
Cooler
Stator
Impeller Flywheel
Diffuser
Cooler Rotor
Stator
Nozzles

<table>
<thead>
<tr>
<th>Items</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP Nozzles</td>
<td>4</td>
</tr>
<tr>
<td>Feed Water Nozzles</td>
<td>8</td>
</tr>
<tr>
<td>Steam Nozzles</td>
<td>8</td>
</tr>
<tr>
<td>Safety Injection Nozzles</td>
<td>4*</td>
</tr>
<tr>
<td>Shutdown Cooling Nozzles</td>
<td>4*</td>
</tr>
<tr>
<td>Chemical Volume Control System Nozzles</td>
<td>2*</td>
</tr>
<tr>
<td>Ex-Core Detector Nozzles</td>
<td>2*</td>
</tr>
<tr>
<td>Reactor Coolant Ventilation Nozzles</td>
<td>1*</td>
</tr>
</tbody>
</table>

* Nozzle IDs are < 2.0 inch

Nozzles on RPV
Reactor Closure Head Assembly

<table>
<thead>
<tr>
<th>Name (Item)</th>
<th>No</th>
<th>Name (Item)</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRDM Nozzle</td>
<td>25</td>
<td>PZR Level Gauge Nozzle</td>
<td>3</td>
</tr>
<tr>
<td>PZR Heater Nozzle</td>
<td>10</td>
<td>PZR Temp. Gauge Nozzle</td>
<td>2</td>
</tr>
<tr>
<td>PZR Safety Valve Nozzle</td>
<td>2</td>
<td>PZR Press. Gauge Nozzle</td>
<td>4</td>
</tr>
<tr>
<td>SDS Nozzle</td>
<td>2</td>
<td>Ex-Core Detector Nozzle</td>
<td>4</td>
</tr>
<tr>
<td>PZR Spray Nozzle</td>
<td>4</td>
<td>PZR Sampling Nozzle</td>
<td>1</td>
</tr>
<tr>
<td>ICI Nozzle</td>
<td>29</td>
<td>PZR Ventilation Nozzle</td>
<td>1</td>
</tr>
<tr>
<td>RV Level Gauge Nozzle</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of Reactor Closure Head Assembly]

Key Components:
- CRDM Nozzle
- ICI Nozzle
- RV Upper Flange
- ICI Guide Tube Structure
Pressurizer

- **In-Vessel Pressurizer**
 - **Pressurizer Space**
 - Closure head and upper region of UGS
 - Not a separate equipment (hardware)
 - **Pressure Control : by Electric heater**
 - Steam & coolant mixture
 - **Insulation**
 - External Insulation on the Closure Head
 - Wet Thermal Insulation
Major Component Design

Steam Generator
- Helically coiled once-through HEX
- Produce Super-heated steam (30 ℃)
- Tube material: Alloy 690
- Tube inspection (ISI)

Reactor Coolant Pump
- Canned motor pumps
- Horizontally mounted on RV wall
- Monitoring
 - Rotational Speed: Flow-rate
 - Acoustic & Vibration
 - Temperature (Coil, Coolant)
 - Motor Overload
Digital MMIS

- Fully Digitalized I&C System: DSP Platform
 - 4 Channel Safety/Protection System and Communication
 - 2 Channel Non-Safety System

- Advanced Human-Interface Control Room
 - Ecological Interface Design
 - Alarm Reduction
 - Elastic Tile Alarm
Balance of Plant

Schematic Diagram of the Secondary System
Reactor Containment Building

- Pre-Stressed Concrete Lined with Carbon Steel Plate
- Maintains structural integrity of cavity in severe accident
- Aircraft Crash
 ✓ Requirements are under legislative process in Korea
 ✓ SMART: designed to have reinforced CV and Aux. Bldg against Aircraft Crash

Containment Building
- Design Pressure: 35 psig
- Design Temperature: 240°F
Post Fukushima Action Items

<table>
<thead>
<tr>
<th>Post Fukushima Action Items</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseismic Structural Integrity</td>
<td>SSAR Revise Done</td>
</tr>
<tr>
<td>• Automatic Reactor Shutdown System @>0.18g Earthquake</td>
<td></td>
</tr>
<tr>
<td>• Plant Safety System Seismic Design: 0.3g SSE</td>
<td></td>
</tr>
<tr>
<td>Tsunami Protection</td>
<td>@Construction SSAR Revise</td>
</tr>
<tr>
<td>• Designed Site Elevation > 10m</td>
<td></td>
</tr>
<tr>
<td>• Water-tight Doors and Drain Pumps for Emergency Power Sources and Safety Related Equipments (EDG, AAC, Battery, SFSP Cooling System, Circulation Water Intake System…)</td>
<td></td>
</tr>
<tr>
<td>Additional Emergency Power Source and Heat Sink</td>
<td>SSAR Revise @Construction</td>
</tr>
<tr>
<td>• Install Mobile Emergency Diesel Generator/Battery per each plant site</td>
<td></td>
</tr>
<tr>
<td>• External Cooling Water Supply Lines to SFSP (+Mobile Water Supply)</td>
<td></td>
</tr>
<tr>
<td>• Enhance AAC Design Requirements @ Multiple Units Failure (Capacity, Cooling Mechanism, Fuel Storage)</td>
<td></td>
</tr>
<tr>
<td>Severe Accident Mitigation</td>
<td>Done</td>
</tr>
<tr>
<td>• Installation of Passive Auto-Catalytic Recombiners (PAR) and Real-time Hydrogen Monitors</td>
<td></td>
</tr>
<tr>
<td>• Containment Depressurization/Exhaust System @Severe Accident</td>
<td></td>
</tr>
<tr>
<td>• Additional Installation of External Emergency Cooling Water Injection Lines for both Primary/Secondary Systems and Safety Parameter Monitoring System</td>
<td></td>
</tr>
<tr>
<td>• Enhance Operator Training Program @ Severe Accident Scenarios</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>@Construction</td>
</tr>
<tr>
<td>• Enhancement of Emergency Preparedness (Additional Storage of Potassium Iodide, Gas Masks, Filters, RMonitors, RPSuit…)</td>
<td></td>
</tr>
<tr>
<td>• Revise Emergency Action Level of Radiation Emergency Plan reflecting earthquake and/or tsunami level</td>
<td></td>
</tr>
</tbody>
</table>
SMART basically adopts Proven Technologies of Existing PWR

SMART-specific Technologies are being fully Validated

- Experimental Validation of SMART-specific Design Performance and Safety
 - Total of 22 Validation Experiments were Selected based on
 - PIRT (Phenomena Identification and Ranking Table)
 - Experts Opinions from Regulation, Industries, Institutes and Universities
 - Experimental Validation envelop Fuel/Core, TH/Safety, Mechanics/Components and Digital I&C
- Software Validation of Key Design Tools and Methods (11)
 - Core Physics, Core Thermal-Hydraulics, Safety Analysis,
Technology Validation Program

Technology Validation

Safety Tests
- Core SET
 - Freon CHF
 - Water CHF
- Safety SET
 - Safety Injection
 - Helical SG Heat Transfer
 - Condensation HX Heat Transfer
- Integral Effect Tests
 - VISTA SBLOCA
 - SMART-ITL
- Digital MMIS Safety System
 - Control Unit Platform
 - Communication Switch
 - Integral Safety System

Tools & Methods
- Code Devel/V&V
 - Safety: TASS/SMR-S
 - Core TH: MATRA-S
 - Core Protec./Monitor.
- Design Methodology
 - DNBR Analysis
 - Accident Analysis (SBLOCA, LOFA, …)
 - Integral Rx Dynamics

Performance Tests
- Fuel Assembly
 - Out-of-Pile Mech./Hydr.
- RPV TH
 - RPV Flow Distribution
 - Flow Mixing Header Ass.
 - Integral Steam PZR
 - PZR Level Measurement
- Components
 - RCP Hydrodynamics
 - RPV Internals Dynamics
 - SG Tube Irradiation
 - Helical SG ISI
 - In-core Instrumentation

V&V

Technical Reports

Standard SAR

Standard Design Approval

Design Data

Standard Design
High Temperature & High Pressure T/H Integral Tests

VISTA- ITL
- Experimental Validation of SBLOCA Phenomena
- Height Ratio = 1:2.8, Area Ratio = 1:470,
 Operating Parameter Ratio : 1:1
- Single Loop

SMART- ITL
- Experimental Validation of Integral Performance and Safety
- Height Ratio = 1:1, Area Ratio = 1:49,
 Operating Parameter Ratio = 1:1
- Four Loops
Technology Validation Program– Core & Fuel

Subchannel Code V&V
- MATRA-S code
 - Subchannel integral balance eq.
 - Heat/mass transfer kinetics
 - Implicit, marching scheme
- MATRA-S code validation
 - Flow & enthalpy distribution tests
 - Inlet jetting test
- Subchannel relocational tests

CHF Correlation System V&V
- TH Field Analysis: MATRA-S
- Optimization of Mixing Coefficient
- Local Parameter CHF Correlation
- Limit DNBR
- 95/95 tolerance limit
- Statistical DNBR Design

Fast-run DNBR Code V&V
- 5-channel analysis model
- Characteristics
 - 4-channel model for SMART core
 - Non-iterative marching scheme
 - Local parameter CHF correlation factor
 - Modular programming
- Applications
 - STDNB module in SCOPS
 - Transient DNBR analysis module

Model Validation

DNBR Model

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

DNBR Code Analysis

Model Validation

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods

CHF Correlation System V&V

Fast-run DNBR Code V&V

Core Protection/Monitoring System V&V

Fuel Component Test
Tests for Component Selection
- Spacer Grid Impact Test
- Top/Bottom Nozzle Structure Test
- Debris Filtering Test
- Fuel Rod Characteristics Tests
- Control Rod Component Tests

Fuel Performance Tests

Core Thermal-Hydraulic Tools and Methods
Thermal-Hydraulic Performance Tests

- **FMHA Performance Test**
 - Scale Ratio: 1/5
 - SG Outlet – Core Inlet Simulation
 - Condition: ATM, 60°C
 - Test Matrix
 - 1 or 2 Section SG Breakdown Test
 - FMHA Outlet Flow Hole Optimization

- **Internal Pressurizer/Level Meas. Test**
 - Scale Ratio: 1/6
 - PZR Internal Structure Simulation
 - Condition: 15MPa, Saturation Temperature
 - Test Matrix
 - Normal Condition
 - In-surge/Out-surge
 - Level Measurement Test

- **SG and PRHRS Hx Heat Transfer Test**
 - Scale Ratio Height/Volume: 1/2.8, 1/473
 - Single Loop Simulation
 - Operating Condition (Power/Pressure): 100% / 15MPa

- **Safety Injection Bypass Test**
 - Scale Ratio: 1/5
 - Operating Condition: < 4MPa, Saturated Temp.

Reactor Pressure Vessel Assembly Flow Distribution Test

Safety Certification Tests

- **Design Certification for SMART Hydraulic System**
 - 1/5 Scaling
 - SG Outlet – Core Inlet Simulation
 - Condition: ATM, 60°C
 - Test Matrix
 - 1 or 2 Section SG Breakdown Test
 - FMHA Outlet Flow Hole Optimization

- **PZR Internal Structure Simulation**
 - 1/6 Scaling
 - Condition: 15MPa, Saturation Temperature
 - Test Matrix
 - Normal Condition
 - In-surge/Out-surge
 - Level Measurement Test

- **Tube Modeling Test**
 - Condition: Normal and Transient

- **Scale Ratio Height/Volume**:
 - 1/2.8, 1/473

- **Single Loop Simulation**
 - Operating Condition (Power/Pressure): 100% / 15MPa

- **PRHRS Makeup Tank**
 - Scale Ratio: 1/49
 - Design Concept: 4 Loop, 4 Train Secondary side
 - Operating Condition (Power/Pressure):
 - < 30% Power, 15MPa

- **Tube Modeling Test**
 - Condition: Normal and Transient

- **Scale Ratio Height/Volume**:
 - 1/2.8, 1/473

- **Operating Condition (Power/Pressure)**:
 - 100% / 15MPa

- **Separate Effect Test**
 - Scale Ratio: 1/5
 - Operating Condition: < 4MPa, Saturated Temp.

- **Operating Condition** (Power/Pressure):
 - < 30% Power, 15MPa

Tube Modeling Test

- Scale Ratio: 1/5
- Operating Condition: < 4MPa, Saturated Temp.

Operating Condition

- Power/Pressure:
 - < 30% Power, 15MPa

Scale Ratio Height/Volume

- 1/2.8, 1/473

Normal and Transient

Single Loop Simulation

Operating Condition (Power/Pressure)

- 100% / 15MPa

Scale Ratio Height/Volume

- 1/2.8, 1/473

Operating Condition (Power/Pressure):

- < 30% Power, 15MPa
Mechanics & Components

- Reactor Coolant Pump Performance Test
- Verification of Structural Dynamic Analysis Method
- Verification of Hydraulic Load Analysis Method
- SMART Steam Generator Winded With Helical Tubes
- Neutron Irradiation in HANARO
- HANARO and Capsule Including Alloy 690 Test Specimen for Neutron Irradiation
- 0.4T CT Tensile Test Specimen
- 0.4T Compact Tension Test Specimen
- Smart Steam Generator Winded With Helical Tubes
- Alloy 690 Test Specimen
- SG Tube Material (A690) Irradiation Test

RPV Dynamics & Canned Motor Pump Tests

SMART System-integrated Modular Advanced Reactor
Component Maintenance

Insertion Test of ICI (In-Core Instrument)
- ICI sensor Spec.
 - Dia.: 10.7 mm
 - Length: 18 m

Real Path of In-Core Instrument

Insert Force Analysis of ICI

Eddy Current Sensor Spec.
- Detector Dia.: 10.5 mm
- Length: 40 m

Insert Force Analysis of Eddy Current Sensor

ISI (In-Service Inspection) Test Using Eddy Current Sensor

ISI Test Mock-up for Steam Generator

Top-mounted In-core Instrumentation

Helical SG In-service Inspection