6th INPRO Dialogue Forum on Global Nuclear Energy Sustainability: Licensing and Safety Issues for Small and Medium-sized Nuclear Power Reactors (SMRs)

29 July - 2 August 2013
IAEA Headquarters, Vienna, Austria

Status of Global SMR Development and Prospects for Deployment

M. Hadid Subki
Nuclear Power Technology Development Section
Division of Nuclear Power, Department of Nuclear Energy
Outline

- Motivation – Driving Forces
- Status of Countries on SMR Initiatives
- What’s new in global SMR development and deployment?
- Practical Categorization of SMR Design & Technology
- SMR for Immediate and Near-Term Deployments
- Perceived Advantages and Challenges
- Advanced Design Features & Technologies
- Incorporating Lessons Learned from the Fukushima Daiichi Accident in SMR Technology Assessment
- Focus of IAEA Activities on SMR Technology Development for 2014 - 2015
Motivation – Driving Forces …

- The need for flexible power generation for wider range of users and applications;
- Replacement of aging fossil-fired units;
- Potential for enhanced safety margin through inherent and/or passive safety features;
- Economic consideration – better affordability;
- Potential for innovative energy systems:
 - Cogeneration & non-electric applications
 - Hybrid energy systems of nuclear (SMR) with renewables

Small and remote grid

Desalination

District heating

Driving cargo ships

6th IAEA INPRO Dialogue Forum on Licensing and Safety Issues of SMRs

29 July - 2 August 2013
Which countries deploy SMRs?

- Technology developer countries (NPPs in operation)
- Countries with NPPs
- Newcomer countries

Status of Countries on SMR Initiatives

IAEA INPRO Dialogue Forum on Licensing and Safety Issues of SMRs
29 July - 2 August 2013
What’s New in Global SMR Development?

<table>
<thead>
<tr>
<th>Country</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Site excavation for CAREM-25 prototype was started in September 2011; first concrete pour expected by end 2013</td>
</tr>
<tr>
<td>China</td>
<td>2 modules of HTR-PM under construction; CNNC developing ACP-100 which will be constructed by 2015 SNERDI developing CAP-150 and CAP-FNPP</td>
</tr>
<tr>
<td>France</td>
<td>DCNS originated Flexblue capsule, 160 MWe, 60-100m seafloor-moored, 5-15 km from the coast, off-shore and local control rooms</td>
</tr>
<tr>
<td>India</td>
<td>The Prototype FBR prepared for start-up commissioning. 4 units of PHWR-700 under construction, 4 more units to follow. AHWR300-LEU at final detailed design stage and ready for construction.</td>
</tr>
<tr>
<td>Italy</td>
<td>Politecnico di Milano (POLIMI) and universities in Croatia & Japan are continuing the development of IRIS design - previously lead by the Westinghouse Consortium</td>
</tr>
<tr>
<td>Japan</td>
<td>Toshiba had promoted the 10 MWe 4S for a design certification with the US NRC for application in Alaska and newcomer countries.</td>
</tr>
</tbody>
</table>
SMART

On 4 July 2012, the Korean Nuclear Safety and Security Commission issued the Standard Design Approval for the 100 MWe SMART – the first iPWR received certification.

KLT-40S

- **SVBR-100**
- **BREST-300**
- **SHELF**

Construction of 2 modules of barge-mounted KLT-40s near completion; Lead Bismuth cooled **SVBR-100** & Lead-cooled **BREST-300** to deploy by 2018, **SHELF** seabed-based conceptual design.

mPower

- **NuScale**
- **W-SMR**
- **SMR-160**

Some have utilities to deploy in specific sites. B&W received US-DOE funding for **mPower** design. The total funding is 452M$/5 years for 2 out of 4 competing iPWR based-SMRs. The mPower got the award in the first round. The DOE will have 2nd round of funding award in November 2013.

Introducing the IAEA in 2012
Reactors Under Construction in SMR category

<table>
<thead>
<tr>
<th>Country</th>
<th>Reactor Model</th>
<th>Output (MWe)</th>
<th>Designer</th>
<th>Number of units</th>
<th>Site, Plant ID, and unit #</th>
<th>Commercial Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>PFBR-500 (a prototype)</td>
<td>500</td>
<td>IGCAR</td>
<td>1</td>
<td>Kalpakkam</td>
<td>2013</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>KLT-40S (ship-borne)</td>
<td>30</td>
<td>OKBM Afrikantov</td>
<td>2</td>
<td>Akademik Lomonosov</td>
<td>2013</td>
</tr>
<tr>
<td>Pakistan</td>
<td>CNP300</td>
<td>320</td>
<td>CNNC/NPIC</td>
<td>2</td>
<td>Chashma units 3 and 4</td>
<td>2017 – 2018</td>
</tr>
<tr>
<td>China</td>
<td>HTR-PM (GCR)</td>
<td>200</td>
<td>Tsinghua Univ./Harbin</td>
<td>1</td>
<td>Shidaowan unit 1</td>
<td>2017 ~ 2018</td>
</tr>
<tr>
<td>Argentina</td>
<td>CAREM-25 (a prototype)</td>
<td>27</td>
<td>CNEA</td>
<td>1</td>
<td>CAREM-25</td>
<td>2017 ~ 2018</td>
</tr>
</tbody>
</table>
Practical Categorization of SMRs

- **Advanced SMRs**
 - *including modular reactors and integrated PWRs*

- **Innovative SMRs**
 - *including small-sized Gen-IV reactors with non-water coolant/moderator*

- **Converted and Modified SMRs**
 - *Including barge-mounted floating NPP and seabed-moored submarine-like reactors*

- **Conventional SMRs**
 - *Those of Gen-II technologies and still being deployed*
Practical Categorization of SMRs

- **Advanced SMRs** *(incl. Modular and integrated-PWRs)*

CAREM-25
Argentina

SMART
Korea, Republic of

VBER-300
Russia

WWER-300
Russia

mPower
USA

NuScale
USA

Westinghouse SMR - USA

ACP-100
China

CAP-150
China

CEFR
China

4S
Japan

PFBR-500
India

HTR-PM
China

6th IAEA INPRO Dialogue Forum on Licensing and Safety Issues of SMRs
29 July - 2 August 2013
Practical Categorization of SMRs

- **Advanced SMRs** *(incl. Modular and integrated-PWRs)*
 - Each module has a dedicated turbine generator
 - Modularity permits scaling to any size

Courtesy of NuScale Power, USA.
(cont’d) Practical Categorization of SMRs

- **Innovative SMRs**

 - IMR
 - Japan
 - AHWR300-LEU
 - India
 - GT-MHR
 - USA
 - PRISM
 - USA
 - EM²
 - USA
 - PBMR
 - South Africa
(cont’d) Practical Categorization of SMRs

- **Converted/Modified SMRs**

 - **Small CNPP**
 - **FPU with KLT-40S RPs**
 - KLT-40s
 - Russian Federation
 - **Flexblue**
 - France
 - **SVBR-100**
 - Russian Federation
(cont’d) Practical Categorization of SMRs

- *Conventional SMRs*

CNP-300 from China’s CNNC/NPIC for Chashma NPPs 1 – 4 in Pakistan

PHWRs 220, 540, and 700 NPCIL, India
SMRs for Near-term Deployment

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Design Organization</th>
<th>Country of Origin</th>
<th>Electrical Capacity, MWe</th>
<th>Design Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SVBR-100</td>
<td>JSC AKME Engineering</td>
<td>Russian Federation</td>
<td>100</td>
<td>Detailed design for prototype construction</td>
</tr>
<tr>
<td>2</td>
<td>System Integrated Modular Advanced Reactor (SMART)</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Republic of Korea</td>
<td>100</td>
<td>Standard Design Approval Received 4 July 2012</td>
</tr>
<tr>
<td>3</td>
<td>mPower</td>
<td>Babcock & Wilcox</td>
<td>United States of America</td>
<td>180/module</td>
<td>Detailed design, to apply for certification - end of 2013</td>
</tr>
<tr>
<td>4</td>
<td>NuScale</td>
<td>NuScale Power Inc.</td>
<td>United States of America</td>
<td>45/module</td>
<td>Detailed design, to apply for certification - end of 2013</td>
</tr>
<tr>
<td>5</td>
<td>Westinghouse SMR</td>
<td>Westinghouse</td>
<td>United States of America</td>
<td>225</td>
<td>Detailed design, to apply for certification - end of 2013</td>
</tr>
<tr>
<td>6</td>
<td>VBER-300</td>
<td>OKBM Afrikantov</td>
<td>Russian Federation</td>
<td>300</td>
<td>Detailed design</td>
</tr>
<tr>
<td>7</td>
<td>Super-Safe, Small and Simple (4S)</td>
<td>Toshiba</td>
<td>Japan</td>
<td>10</td>
<td>Detailed design</td>
</tr>
</tbody>
</table>
SMRs for Immediate Deployment

<table>
<thead>
<tr>
<th>Name</th>
<th>Design Organization</th>
<th>Country of Origin</th>
<th>Electrical Capacity, MWe</th>
<th>Design Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHWR-220</td>
<td>NPCIL</td>
<td>India</td>
<td>220</td>
<td>16 units in operation</td>
</tr>
<tr>
<td>PHWR-540</td>
<td>NPCIL</td>
<td>India</td>
<td>540</td>
<td>2 units in operation</td>
</tr>
<tr>
<td>PHWR-700</td>
<td>NPCIL</td>
<td>India</td>
<td>700</td>
<td>4 units under construction</td>
</tr>
<tr>
<td>CNP-300</td>
<td>CNNC</td>
<td>China, Republic of</td>
<td>300</td>
<td>3 units in operation, 2 units under construction</td>
</tr>
<tr>
<td>Prototype Fast Breed Reactor (PFBR-500)</td>
<td>IGCAR</td>
<td>India</td>
<td>500</td>
<td>Under construction – Commissioning in mid 2012</td>
</tr>
<tr>
<td>KLT-40S</td>
<td>OKBM Afrikantov</td>
<td>Russian Federation</td>
<td>70</td>
<td>2 units under construction</td>
</tr>
<tr>
<td>HTR-PM</td>
<td>Tsinghua University</td>
<td>China, Republic of</td>
<td>250</td>
<td>Detailed design, 2 modules under construction</td>
</tr>
<tr>
<td>CAREM-25</td>
<td>CNEA</td>
<td>Argentina</td>
<td>27</td>
<td>Started site excavation in Sept 2011, construction in 2012</td>
</tr>
</tbody>
</table>
Perceived Advantages and Challenges

IAEA Observation

<table>
<thead>
<tr>
<th>Technological Issues</th>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Shorter construction period (modularization)</td>
<td>• Licensability (due to innovative or first-of-a-kind engineering structure, systems and components)</td>
</tr>
<tr>
<td></td>
<td>• Potential for enhanced safety and reliability</td>
<td>• Non-LWR technologies</td>
</tr>
<tr>
<td></td>
<td>• Design simplicity</td>
<td>• Operability performance/record</td>
</tr>
<tr>
<td></td>
<td>• Suitability for non-electric application (desalination, etc.).</td>
<td>• Human factor engineering; operator staffing for multiple-modules plant</td>
</tr>
<tr>
<td></td>
<td>• Replacement for aging fossil plants, reducing GHG emissions</td>
<td>• Proliferation Resistance & Physical Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Post Fukushima action items on design and safety</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Technological Issues</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Fitness for smaller electricity grids</td>
<td>• Economic competitiveness</td>
</tr>
<tr>
<td></td>
<td>• Options to match demand growth by incremental capacity increase</td>
<td>• First of a kind cost estimate</td>
</tr>
<tr>
<td></td>
<td>• Site flexibility</td>
<td>• Regulatory infrastructure (in both expanding and newcomer countries)</td>
</tr>
<tr>
<td></td>
<td>• Reduced emergency planning zone</td>
<td>• Availability of design for newcomers</td>
</tr>
<tr>
<td></td>
<td>• Lower upfront capital cost (better affordability)</td>
<td>• Infrastructure requirements</td>
</tr>
<tr>
<td></td>
<td>• Easier financing scheme</td>
<td>• Post Fukushima action items on institutional issues</td>
</tr>
</tbody>
</table>
Advanced Design Features & Technologies

<table>
<thead>
<tr>
<th>Advanced Features</th>
<th>** Adopted by**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple-modules deployment</td>
<td>Almost all SMR designs</td>
</tr>
<tr>
<td>Integrated nuclear steam supply system, with in-vessel steam generators</td>
<td>SMART, mPower, W-SMR, ACP-100, NuScale, CAREM-25, CAP-150</td>
</tr>
<tr>
<td>Helical-coil steam generators</td>
<td>IRIS, NuScale, SHELF, HTR-PM</td>
</tr>
<tr>
<td>Natural-circulation of Primary Coolant</td>
<td>CAREM-25, NuScale, AHWR300-LEU, ABV-6</td>
</tr>
<tr>
<td>Horizontally-mounted RCPs</td>
<td>SMART, mPower, ACP-100, IRIS</td>
</tr>
<tr>
<td>Internal control rod drive mechanisms</td>
<td>mPower, IRIS</td>
</tr>
</tbody>
</table>
| **Passive engineered safety features** – *eliminate the need of EDG* | Almost all SMR designs – *incorporate lessons learned from the FDA*
| Digital instrumentation & control | Almost all SMR designs |
| Below grade construction | NuScale, mPower |
| Barge-mounted floating NPP | KLT-40S, CAP-FNPP |
| Sea-bed moored SMR operated from a coast control room | Flexblue, SHELF |
| Non-water cooled SMRs | HTR-PM, SVBR-100, 4S, PFBR-500, … |

Common Issues: Verification of advanced features, codes & standards, and *technology assessments*
Anticipated Issues on Instrumentation & Control

- Specific Operational and Process Characteristics
 - First of a kind structure, system and component engineering;
 - New plant dynamic behaviour and special architectures
 - Innovative reactors with long fuel cycles and extended operation
 - Non-water coolants/moderators and extreme remote environments

- Improved Functionality
 - Multi-modules plant operation
 - Flexible operation (requirements for extreme load-follow capability)
 - Non-electric applications
 - Control of Nuclear-RES Hybrid energy systems

- I&C to satisfy specific safety requirements in post-Fukushima
 - Revisit defence-in-depth, diversity, redundancy, independency of safe reactor trip versus ESF actuations
 - I&C for Non-Electric Emergency Core Cooling Systems

- Technological Needs
 - Sensor technologies for integral-PWRs’ process monitoring and measurements
 - Digital I&C

- Cyber-Security & Communications
 - SMRs deployment in remote-areas
 - Emergency planning zone

- Address Human-Performance Issues
CM on Incorporating Lessons Learned from the FDA in SMR Technology Assessment for Design of Engineered Safety System (30 May-1 June 2012)

• Achieved Objectives:
 • Presented technical lessons-learned from the sequence of events of the Fukushima accident to be incorporated in the design of engineered safety features of various small-reactor technology currently under development;
 • Discussed the impact of the accident to the current international R&D activities on SMR technology development
 • To advise the IAEA on the identification of subjects of near-term and long-term international R&D activities in SMR technology development, in the area of advanced engineered safety features designs, focusing on non-electric emergency core and containment cooling system designs and performance evaluation
 • Participants: India (BARC), Indonesia (BATAN), Italy (Polimi), Japan (Tokyo Institute of Technology), Republic of Korea (KAERI), Russia (OKBM Afrikantov), and USA (GE-Hitachi Nuclear Energy)

• Based on the lessons learned from FDA, the participants provided recommendations on the possible countermeasure/technology development to be adopted in the design of advanced integral type water cooled SMRs.
Recommendations:

<table>
<thead>
<tr>
<th>Country</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| India | • Larger margin in advanced plant irrespective of plant location.
 • Development of accident management skills under extreme conditions. |
| Indonesia | • Consideration of volcano eruption and tsunami simultaneously.
 • Protection of system and components from volcanic dust. |
| Italy | • Consideration of “plug-in” water and electricity supplies in early design phase.
 • Determination of optimum grace period. |
| Japan | • Ensure switchboards integrity.
 • Location of spent fuel pool should be reconsidered. |
| Korea | • Passive cooling of spent fuel pool.
 • Periodic inspection and testing of SSCs need to be strengthened. |
| Russia | • Scope of PSA needs to be extended to include various external hazards.
 • Off-site resources should be timely with no long delays. |
| USA | • Multiple unit threat needs to be considered for SMR deployment.
 • Plans/procedures to bring equipment from the closest adjacent NPP. |
Focus of IAEA Activities on SMR Technology Development for 2014 - 2015

1. Formulation of roadmap for technology development and deployment - including countries requirements, regulatory and business issues

2. Defining safety-performance, operability, maintainability and constructability indicators to assist countries in assessing advanced SMR technologies

3. Development of Guidance and Tools to Facilitate Countries with Planning for SMRs Technology Implementation
 - Reactor Technology Assessment Methodology for SMR
 - Approaches for Environmental Impact Assessment for SMR

4. CRP on the Design and Performance Assessment of Non-Electric Engineered Safety Features in Advanced Small Reactors

Emphasize the Need to Facilitate Capacity Building in New Entrants on SMR Technology Assessment by Identifying Common Positions on Specific SMR Issues
… Thank you for your attention.