Flexblue®: a Subsea Reactor Project
Considerations for its licensing

July, 2013
Flexblue® : a Subsea Reactor
Differences for an innovative solution

- Competitive
 - Reasonable cost of energy

- Intrinsically Safe
 - Using the sea as a permanently available, infinite heat sink

- Environmentally Friendly
 - Reduced Site and Civil Works
 - Limited land print
 - Easy decommissioning and dismantling

- Reliable
 - Proven technologies
 - Simplified design, modular construction
 - 11 skids, 80 sub-skids
 - Standardized, Series production
 - Fully workshops/shipyard constructed

Copyright © DCNS 2013
2 July 2013 6th INPRO Dialogue Forum - Flexblue
Flexblue® : based on a Subsea Module

Power Output (per module) = 160 MWe
moored up to 100 meters depth
Length ≅ 146 m, Φ 14 m
Displacement ≅ 20 000 tons
Remote Operation, permanent accessibility
Flexblue® life cycle

To be adapted according to the refueling mode

First Flexblue® units: use of existing ship ➔ proven solution
Next Flexblue® units: dedicated solution, w/wo on-board refueling
Flexblue® Safety Concept
Full use of passive systems capabilities

- **Extended** and **passive** safety
- 1st line of defense ensured by active systems
 - Normal conditions, incidents: active systems
 - Accidents: passive systems with extended grace period

NORMAL ACTIVE SYSTEMS

PASSIVE SAFETY SYSTEMS

- Passive core cooling
- Depressurization + flooding

Infinite heat sink

Residual heat removal needed

Injection needed
Inherent Nuclear Safety

Flexblue® Specific Advantages

IAEA « INSAG 10 » levels

1. **Prevent abnormal operation and failures**
 - Fully manufactured in factory and Shipyard
 - Immersion
 - High Quality, Standardization, Proven Technologies
 - Elimination of main External Hazards

2. **Control abnormal operation and detect failures**
 - Fully automated

3. **Control accidents within design basis**
 - Passive safety systems, Infinite heat sink
 - External vessel core cooling
 - No need for operator action
 - Improved prevention of core melt

4. **Control severe conditions, prevent accident progression**
 - Hull flooding capability
 - No radiological releases

5. **Mitigate radiological consequences of significant releases**
 - Reduced source term, Significant releases precluded; in case, retention on board, no neighboring population
 - No atmospheric releases, no sheltering, no evacuation required
 - Easier recovery of site
 - Transportable plant

Copyright © DCNS 2013
Concept Flexblue®
Siting considerations

- Large number of potential sites
 - Bathymetry, distance from the shore
 - Industrial, economical, environmental aspects easily taken into account
- Environmentally friendly concept
- Immersion provides natural protection against most external events
 - Exclusion of snow, wind, ...
 - Significant attenuation:
 - Waves, tsunami
 - Earthquake: design margins, robustness of passive systems
- Malevolent acts:
 - Limited accessibility
 - Monitoring devices
 - Intervention, according to specific country requirements

Immersion provides efficient tsunami attenuation

Monitoring and protection system
Inherent Nuclear Safety
A very narrowed time-limited EPZ

Flexblue as compared to large and medium NPPs

- Normal operation: no \(^3\)H releases (Boron Free Operation)
- The small power of the reactor, combined with passive systems and immersion, provides:
 - large, permanently available, heat sink: very low CDF
 - very long grace period
 - no direct atmospheric releases and a very narrowed, time-limited, EPZ

In highly hypothetical case:
- Radioactive inventory reduced
 >10 times vs a large NPP
- Robust containment function
- Retention on board
- No population in the immediate vicinity

Typical 10 miles radius EPZ for large land-based reactor

Flexblue: Narrowed and time-limited EPZ
Concept Flexblue®
Licensing considerations

- SMR Issues
 - Passive systems with infinite heat sink
 - Multi-module control room
 - Source term / EPZ : SMR specificities to be taken into account
 - Reduced ST – delay before consequences – low CDF/LRF

- TNPP Issues and Subsea Aspects
 - Various regulations :
 - Transportation of dangerous goods and nuclear materials (INF)
 - Nuclear ships (OMI)
 - No existing regulatory framework fully relevant for transportation of fuelled TNPPs
 - Necessity to adapt existing rules and guidance documents
 - Need for an international consensus
 - Transport related specifications for safety systems
 - Reliable, redundant, diversified communication means
International aspects

- **Need for international design certification**
 - Maintain sustainable standardization
 - Allow experience feedback and assistance to new comers

- **International life cycle**
 - Potential for multiple operators and regulators

- **Cooperation between states (governments, industry, regulators, …)**
 - E.g. information exchange, repartition of responsibilities, … in order to comply with national and international laws and conventions
The Flexblue® Concept …
Imagine…