Environmental impacts of different fuel cycles options

Dr Stéphane BOURG
Prof. Christophe POINSSOT
Research Department on mining and fuel recycling processes,
Nuclear Energy Division, CEA
Stephane.bourg@cea.fr
THE DIFFERENT NUCLEAR FUEL CYCLE OPTIONS

One Through Cycle
Thermal Reactors

Twice-Through Cycle
Thermal Reactors

Pu multi-recycling
Fast Reactors
Natural uranium is a finite resource
Global efficiency is currently very low: ~0.7%
- ~70t from the initial ~9500t U ore
Uranium conventional resource
- Limited for the far-future at a reasonable price (130$/kg U)
- Lifespan ~1-2 centuries (current consumption 75kt/y)

Need for preserving U resource

Rough estimates derived from French Fuel cycle assuming no recycling
SAVING THE NATURAL RESOURCE ⇔ RECYCLING THE ACTINIDES

Uranium ore

Depleted uranium

Up to -20%

9500 t

8000 t

1200t

1200t

Spent fuel

URE U re-enriched fuels

MOX fuels

1%

95%

Recycling plants

10 - 15/a Per reactor

FP 4.55%

0.76% oddPu
0.41% evenPu

0.75% 235U
0.54% 236U

238U
239U

93.0%

9300 tHM reprocessed

MELOX

MELOX

>2 000tHM of MOX fuel produced

>33 000 tHM reprocessed

Already allows saving ~20% U_ore ⇒ efficiency increased to ~1%

La Hague

AREVA

S. Bourg, TM IAEA – GCNEP, India, Nov 2019
IMPROVING FURTHER RESOURCE PRESERVATION ➔ PU-MULTIRECYCLING FOR TRANSFORMING 238U

Multirecycling limited by 2nPu buildup ➔ GEN4 systems with fast neutrons

With current reactors

- 1GWe ~ 150t U_{nat}/y
- U=6% world energy potential

With fast neutrons reactors

- 7500 Gtoe
- U=90% world energy potential
- 1GWe ~ 1t U_{nat}/y

Very significant improvement of natural uranium efficiency
A BENEFICIAL LONG-TERM IMPACT OF RECYCLING ON THE WASTE ISSUE

With recycling

- Tailored for confining

Without recycling

- Tailored for producing KWh

1. No Pu, Long-term toxicity

2. Confinement performances

Radiotoxicity relative

\[\text{Relative radiotoxicity} = \frac{\text{Radiotoxicity of recycling}}{\text{Radiotoxicity of non-recycling}} \]

Dose (Sv/y)

\[\text{Dose} = \int_0^T \text{Dose rate} \, dt \]

Time (years)

Tailored for confining

Tailored for producing KWh

Without recycling
ENVIROMENTAL FOOTPRINT OF NUCLEAR ENERGY

Graph showing relative radiotoxicity over time for different disposal methods:
- U-ore
- Glass canisters, no Pu, no minor actinides
- Glass canisters (Pu and minor actinides)
- Direct disposal

The graph illustrates the decrease in relative radiotoxicity over time for each disposal method.
PRESENTATION OF THE REFERENCE CASE: FRENCH NUCLEAR POWERPLANTS FLEET

- 58 reactors located on 19 sites, capped at 63.2 GWe
- **Standardised fleet**: 1 single reactor types, with 3 different powers 900, 1300 et 1450 MWe
- Produce 70-80% of French electricity (~400-450 TWh), i.e. 40% of total French primary energy
- Reactors connected between 1977 and 1999
- 12 GEN1 generation reactors halted
- 1 GEN3 generation reactor under construction (Flamanville3, EPR)
FRENCH REFERENCE FUEL CYCLE
("TWICE-THROUGH CYCLE" – TTC)

Reference = 2010

UOX manufacturing
- U enriched 1053 t/y
- Romans

MOX manufacturing
- MOX 120 t/y

Enrichment
- Pierrelatte
- U natural 8247 t/y
- U depleted 7085 t/y

Conversion
- U depleted 109,5 t/y
- Malvési

Storage
- U ore

Purification
- U natural 7647 t/y

Mines

Reactivity

Reactors
- MELOX
- 58 reactors on 19 sites
- Spent fuel 1173 t/y
- UOX fuel 1053 t/y
- Pu 10,5 t/y
- La Hague

Decay storage
- Spent fuel 1050 t/y
- Spent fuel 1050 t/y
- Spent fuel 123 t/a
- glass: 149 m³/y
- Compacted waste: 189 m³/y
- Techno waste: 275 m³/y

Reprocessing
- U reprocessed 600 t/y
- U reprocessed 390 t/y
- La Hague

Storage

Disposal
- Bure
CHAP.II – RESULTS OF THE CURRENT FRENCH CYCLE
THE GENERAL ENVIRONMENTAL INDICATORS OF THE TTC

<table>
<thead>
<tr>
<th>(gCO₂ eq/kWhₑ)</th>
<th>(gSO₂eq/MWhe)</th>
<th>(gC₂H₄eq/MWhe)</th>
<th>(gPO₄eq/MWhe)</th>
<th>(g1,4-DCBeq/MWhe)</th>
<th>(g1,4-DCBeq/MWhe)</th>
<th>(m²/GWhₑ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,29</td>
<td>34,1</td>
<td>5,2</td>
<td>2,84</td>
<td>638</td>
<td>1233</td>
<td>211</td>
</tr>
</tbody>
</table>
THE POTENTIAL IMPACT INDICATORS OF THE TTC

<table>
<thead>
<tr>
<th></th>
<th>(mg/kWh_e)</th>
<th>(mg/kWh_e)</th>
<th>(mg/kWh_e)</th>
<th>(L/MWh_e)</th>
<th>(L/MWh_e)</th>
<th>(g/MWh_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx</td>
<td>16,276</td>
<td>25,30</td>
<td>287.53</td>
<td>1507</td>
<td>72364</td>
<td>93.9</td>
</tr>
</tbody>
</table>
CONTRIBUTION OF THE DIFFERENT FUEL CYCLE STEPS TO THE OVERALL FOOTPRINT

Improve overall footprint ➔ improve or reduce front-end activities
Radioactive releases (KBq!):

- **53%** Rn release around mines … however strong overestimation since all the Rn is assumed to be instantaneously released (no kinetics)
- **45%** Rare gases release during reprocessing:
 - The overall radiological impact is estimated to be ~1% of natural radioactivity
- **2%** liquid release
 - Dominated by 3H release around reactors.
- **Necessity for considering dose impact … but scenarii are highly subjective and site-dependent**

THE RADIOACTIVE RELEASES OF THE TTC

Radioactive Releases

- **Gas - Radon (Mine)** 53%
- **Gas - Rare gases (Reprocessing)** 45%
- **Liq - Tritium (Reactors)** 2%
- **Gas - Tritium (Reprocessing)**
- **3,1 KBq/KWhe**
- **1245,6 KBq/KWhe**

S. Bourg, TM IAEA – GCNEP, India, Nov 2019
THE RADIOACTIVE WASTE OF THE TTC

- A very sensitive indicators for public acceptance
- Main outcomes
 - **VLLW**: surface repository in operation since 2003 in Morvilliers.
 - Overestimation since mine tailings are included
 - **ILW-SL**: shallow repository in operation since 1994 in Soulaines-Dhuys
 - Dominated by reactors operation
 - **ILW-LL and HLW** are planned to be disposed of in a deep underground repository around Bure (2025 according to the French Law)
 - Dominated by reprocessing activities (replace spent fuel)
WHAT ABOUT THE ENVIRONMENTAL-FRIENDLINESS OF NUCLEAR ENERGY?

Despite the usual feeling, nuclear energy is highly competitive in terms of environmental-friendliness.
Once-through cycle derived from the current French fuel cycle by suppressing the recycling loop and adjusting the materials annual streams.
Anticipated evolution of environmental indicators when implementing the recycling

- GHG emissions
- Sox emissions
- Nox emissions
- Particles emissions
- Land use
- Natural resource efficiency
- Water consumption
- Water withdrawal
- Acidification
- POCP
- Ecotoxicity
- Human toxicity
- Eutrophication
- Chemical liquid effluents
- Technological waste

Directly related to the decrease by 15-20% of the front-end activities
Radioactive release (Bq !!)

- Only $\Delta = \text{Rn}$, (time-dependent decay not accounted for).

Linked to recycling activities:
- Atmospheric release: ^{85}Kr, ^{14}C,
- Liquid release: mainly ^3H, ^{129}I

However, their impact is demonstrated to be negligible:
- 17-24 μSv/yr for the most exposed population
- ~1% natural radioactivity

Total 24.7 μSv (agriculteur)
Conservative case assuming 1700t/y. of 60GWd/t fuels reprocessed
EVOLUTION OF RADIOACTIVE WASTE FROM OTC TO TTC

- Strong modification of the waste typology
- Recycling reduces the repository surface area and excavated volume
CHAP VI – WHAT ABOUT FUTURE NUCLEAR SYSTEMS?
IMPACT OF GEN3 REACTORS: CASE OF EPR

Impact indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>EPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG emissions</td>
<td>gCO₂ eq/kWhe</td>
<td>3.97</td>
</tr>
<tr>
<td>Atmospheric pollution SOx</td>
<td>g/MWhe</td>
<td>12.7</td>
</tr>
<tr>
<td>Atmospheric pollution NOx</td>
<td>g/MWhe</td>
<td>21.35</td>
</tr>
<tr>
<td>Land-use</td>
<td>m²/GWhe</td>
<td>161.6</td>
</tr>
<tr>
<td>Natural resource efficiency</td>
<td>kU/TWhe</td>
<td>15.2</td>
</tr>
<tr>
<td>Water consumption</td>
<td>L/MWhe</td>
<td>1437</td>
</tr>
<tr>
<td>Water withdrawal</td>
<td>L/MWhe</td>
<td>70132</td>
</tr>
<tr>
<td>Acidification potential</td>
<td>gSO₂ eq/MWhe</td>
<td>27.7</td>
</tr>
<tr>
<td>POCP</td>
<td>gC₂H₄ eq/MWhe</td>
<td>2.27</td>
</tr>
<tr>
<td>Ecotoxicity</td>
<td>g₁,₄-DCB eq/MWhe</td>
<td>499.6</td>
</tr>
<tr>
<td>Human toxicity</td>
<td>g₁,₄-DCB eq/MWhe</td>
<td>967.1</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>gPO₄ eq/MWhe</td>
<td>4.18</td>
</tr>
<tr>
<td>Liquid chemical effluents</td>
<td>kg/GWhe</td>
<td>225.40</td>
</tr>
<tr>
<td>Technological wastes</td>
<td>kg/GWhe</td>
<td>20.42</td>
</tr>
<tr>
<td>Gaseous radioactive releases</td>
<td>Bq/KWhe</td>
<td>1.14E+06</td>
</tr>
<tr>
<td>Liquid radioactive releases</td>
<td>Bq/KWhe</td>
<td>3.35E+04</td>
</tr>
<tr>
<td>Total radioactive releases</td>
<td>Bq/KWhe</td>
<td>1.17E+06</td>
</tr>
<tr>
<td>VLLW</td>
<td>m³/TWhe</td>
<td>2.61E+03</td>
</tr>
<tr>
<td>ILW-SL</td>
<td>m³/TWhe</td>
<td>1.94E+01</td>
</tr>
<tr>
<td>ILW-LL</td>
<td>m³/TWhe</td>
<td>7.67E-01</td>
</tr>
<tr>
<td>HLW</td>
<td>m³/TWhe</td>
<td>2.98E-01</td>
</tr>
</tbody>
</table>

Impact indicators comparison

- **GHG emissions**: 3.97 gCO₂ eq/kWhe
- **Atmospheric pollution SOx**: 12.7 g/MWhe
- **Atmospheric pollution NOx**: 21.35 g/MWhe
- **Land-use**: 161.6 m²/GWhe
- **Natural resource efficiency**: 15.2 kU/TWhe
- **Water consumption**: 1437 L/MWhe
- **Water withdrawal**: 70132 L/MWhe
- **Acidification potential**: 27.7 gSO₂ eq/MWhe
- **POCP**: 2.27 gC₂H₄ eq/MWhe
- **Ecotoxicity**: 499.6 g₁,₄-DCB eq/MWhe
- **Human toxicity**: 967.1 g₁,₄-DCB eq/MWhe
- **Eutrophication**: 4.18 gPO₄ eq/MWhe
- **Liquid chemical effluents**: 225.40 kg/GWhe
- **Technological wastes**: 20.42 kg/GWhe
- **Gaseous radioactive releases**: 1.14E+06 Bq/KWhe
- **Liquid radioactive releases**: 3.35E+04 Bq/KWhe
- **Total radioactive releases**: 1.17E+06 Bq/KWhe
- **VLLW**: 2.61E+03 m³/TWhe
- **ILW-SL**: 1.94E+01 m³/TWhe
- **ILW-LL**: 7.67E-01 m³/TWhe
- **HLW**: 2.98E-01 m³/TWhe
COMPARISON OF EPR AND CURRENT PWR TTC

Anticipated impact on environmental indicators of the replacement of current GEN2 reactors by GEN3 EPR

- Improvement related to better efficiency of EPR reactor: higher turbine efficiency (37%), higher availability ratio (85%), higher design lifetime (60y) ➔ Lower fuel consumption (-19%)
- Increase of liquid release linked to a conservative estimate of 3H reactor discharge (75TBq)
TOWARDS GEN4: POTENTIAL IMPACT OF MULTIRECYCLING

- Future 4th generation reactors ⇔ fast neutrons reactors
 - Higher efficiency in natural resource consumption
 - What about their anticipated environmental footprint?

- LCA calculations have been performed for representative 4th generation fuel cycles:
 - SFR taken as a reference for the 4th generation reactors
 - Based on the data available for the former French SFR Phenix & Superphenix
 - 2 hypothetical cases have been calculated:
 - Transition stage: 66% EPR + 33% SFR
 - Theoretical stage: 100% SFR

![Diagram of fuel cycles and waste streams including depleted uranium, FNR MOx, spent FNR MOx, plutonium, and ultimate waste FP/MA (50 t)].
EXTRAPOLATED SODIUM FAST REACTOR CLOSED FUEL CYCLE

Electricity production 453 TWhe

Reactors

Spent fuel 448 t/y

Cooling

Spent fuel 448 t/y

Reprocessing

Glass: 135 m³/y
Metals: 475 m³/y
Tech. Waste: 170 m³

Milling

Storage

U ore

Mining

Storage

U depleted -49,1 t/y

Pu 69,4 t/y

U_reprocessed 355,8 t/y

MOX Fuel fabrication

Enrichment

MOX Fuel fabrication

Uox Fuel fabrication
IMPACT OF GEN4 FUEL CYCLE: CASE OF SFR

<table>
<thead>
<tr>
<th>Impact indicators</th>
<th>Unit</th>
<th>SFR scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG emissions</td>
<td>gCO(_2) eq/kWhe</td>
<td>2.33</td>
</tr>
<tr>
<td>SOx emissions</td>
<td>g/MWhe</td>
<td>0.59</td>
</tr>
<tr>
<td>NOx emissions</td>
<td>g/MWhe</td>
<td>3.83</td>
</tr>
<tr>
<td>Land-use</td>
<td>m(^2)/GWhe</td>
<td>50.2</td>
</tr>
<tr>
<td>Water consumption</td>
<td>L/MWhe</td>
<td>1237</td>
</tr>
<tr>
<td>Water withdrawal</td>
<td>L/MWhe</td>
<td>60336</td>
</tr>
<tr>
<td>Acidification</td>
<td>gSO(_2) eq/MWhe</td>
<td>3.3</td>
</tr>
<tr>
<td>POCP</td>
<td>gC(_2)H(_4) eq/MWhe</td>
<td>0.18</td>
</tr>
<tr>
<td>Ecotoxicity</td>
<td>g1,4-DCB eq/MWhe</td>
<td>0.07</td>
</tr>
<tr>
<td>Human toxicity</td>
<td>g1,4-DCB eq/MWhe</td>
<td>4.8</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>gPO(_4) eq/MWhe</td>
<td>1.8</td>
</tr>
<tr>
<td>Liquid chemical effluents</td>
<td>kg/GWhe</td>
<td>12.6</td>
</tr>
<tr>
<td>Technological waste</td>
<td>kg/GWhe</td>
<td>18.70</td>
</tr>
<tr>
<td>Gaseous radioactive release</td>
<td>Bq/KWhe</td>
<td>5.28E+05</td>
</tr>
<tr>
<td>Liquid radioactive release</td>
<td>Bq/KWhe</td>
<td>3557</td>
</tr>
<tr>
<td>VLLW</td>
<td>m(^3)/TWhe</td>
<td>72.4</td>
</tr>
<tr>
<td>LILW-SL</td>
<td>m(^3)/TWhe</td>
<td>18.2</td>
</tr>
<tr>
<td>LILW-LL</td>
<td>m(^3)/TWhe</td>
<td>1.4</td>
</tr>
<tr>
<td>HLW</td>
<td>m(^3)/TWhe</td>
<td>0.30</td>
</tr>
</tbody>
</table>
• Improvement related to (i) the suppression of front-end activities and (ii) the higher thermal efficiency (~40% ≠ 33%)
No noticeable changes vs. the previous 100% SFR case-study difference <10%. Only significant differences = the radioactive waste, VLLW: -27% LILW-SL: -8% LILW-LL: +7%
ANTICIPATED BENEFICIAL IMPACT OF RECYCLING ACTIVITIES

Actinides recycling significantly improve the nuclear energy environmental footprint
ANTICIPATED BENEFICIAL IMPACT OF RECYCLING ACTIVITIES

Actinides recycling significantly improve the nuclear energy environmental footprint
A SIGNIFICANT IMPROVEMENT OF THE NUCLEAR WASTE ISSUES

- Relative decrease of HLW vs. ILW while total volume of waste ~ constant +/- 20%
- Decrease of thermal power due to Pu-recycling ➞ significant gain for the repository surface and volume
- Decrease of radiotoxicity & lifetime
RECYCLING THE MINOR ACTINIDES, A POTENTIAL CONTRIBUTION FOR DECREASING THE WASTE BURDEN

- Waste toxicity dominated by MA
 - Recycling MA ⇒ decrease waste lifetime and toxicity

- Preserve the valuable repository resource
 - ⇨ of the heat load ⇨
 - ⇨ density of the repository
 - With Am recycling, reduction of the repository volume by a factor up to 8
 - Very significant increase of the repository "lifespan"
THE RATIONALE OF FUTURE NUCLEAR FUEL CYCLES FOR AN IMPROVED SUSTAINABILITY

TOWARDS INCREASING SUSTAINABILITY

Once-through cycle
- Pu-mono-recycling
 - Twice-Through Cycle
 - LWR reactors
 - Pu-recycling in MOX fuel

Breakthrough=reactors
Evolution=cycle

Main incentives
- 1st step towards U resource saving
- Efficient waste conditioning

Main incentives
- Major resource saving
- Energetic independence
- Economic stability

Main incentives
- Decrease of waste burden,
- Optimisation of the repository
- Public acceptance

Pu multi-recycling
- Multi-Through Cycle
- Fast-Reactors (FR)
- Pu multi-recycling

Pu+MA multi-recycling
- Fast Reactors (FR)
- Pu multi-recycling
- MA burning

Pu-mono-recycling
- Gen. II & III

Pu-multi-recycling
- Gen. IV

...+ MA recycling
- Gen. IV

Dates are purely indicative

1980 2000 2200 2040 2060 2080 2100

Breakthrough=reactors
Evolution=cycle

Gen. IV

S. Bourg, TM IAEA – GCNEP, India, Nov 2019
CONCLUSIONS...
CONCLUSION

- Environmental footprint of nuclear energy (NE)
 - Competitive with respects to any other energy sources (within top-3)
 - Confirm the interest of NE for mitigating the global climate change
 - Dominated by the front-end activities, in particular ore mining ⇔ any improvement or reduction of front-end activities is anticipated to be beneficial for the overall footprint

- U/Pu recycling has an overall beneficial effect
 - Improve the generic environmental indicators
 - Although radioactive releases are increased, global effect remains beneficial:
 - **Short-term**: releases << natural radioactivity ⇒ no health impact
 - **Long-term**: beneficial impact for the repository: lifespan ↗, safety ↗, cost ⇐
 - Pu multi-recycling in FNR will enhance this beneficial effect

- Actinides recycling is a key option for reducing the environmental footprint
- Quantitative LCA evidences the significant bias between public perception and actual nuclear energy environmental footprint
TO GO FURTHER ...

Energy, 2014

Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

Ch. Poinssot¹, S. Bourg², N. Ouvrier¹, N. Combemoux³, C. Rostaing³, M. Vargas-Gonzalez³ and J. Bruno³

¹French Atomic Energy and Alternative Energy Commission, CEA, Nuclear Energy Divisions, Radiochemistry & Processes Department, CEA Marcoule, 30207 F-30207 Bagnols-sur-Cèze, France
²AERadio 21 Consulting Sàrl, Pâques-Gare de France, 49-51, 1er étage, 42000 Lyon, France
³AERadio 21 Consulting Sàrl, Pâques-Gare de France, 49-51, 1er étage, 42000 Lyon, France

Energies, 2017

Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling

Jérôme Serp, Christophe Poinssot and Stéphane Bourg*

French Nuclear and Alternative Energy Commission, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes, CEA Marcoule, F-30207 Bagnols sur Ceze, France; j Jerome.serp@cea.fr (J.S.); christophe.poinssot@cea.fr (C.P.)

* Correspondence: stephanie.bourg@cea.fr; Tel: +33-4-6679-7702

Received: 28 July 2017; Accepted: 16 September 2017; Published: 19 September 2017