A brief overview of probability theory in data science

Geert Verdoolaege
1Department of Applied Physics, Ghent University, Ghent, Belgium
2Laboratory for Plasma Physics, Royal Military Academy (LPP–ERM/KMS), Brussels, Belgium

Tutorial 3rd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 27-05-2019
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Overview

1 Origins of probability
2 Frequentist methods and statistics
3 Principles of Bayesian probability theory
4 Monte Carlo computational methods
5 Applications
 • Classification
 • Regression analysis
6 Conclusions and references
Early history of probability

- Earliest traces in Western civilization: Jewish writings, Aristotle

- Notion of probability in law, based on evidence

- Usage in finance

- Usage and demonstration in gambling
World is knowable but uncertainty due to human ignorance

William of Ockham: *Ockham's razor*

Probabilis: a supposedly ‘provable’ opinion

Counting of authorities

Later: degree of truth, a scale

Quantification:

- Law, faith → Bayesian notion
- Gaming → frequentist notion
Quantification

- 17th century: Pascal, Fermat, Huygens
- Comparative testing of hypotheses
- Population statistics
- 1713: Ars Conjectandi by Jacob Bernoulli:
 - Weak law of large numbers
 - Principle of indifference
- De Moivre (1718): The Doctrine of Chances
Bayes and Laplace

- Paper by Thomas Bayes (1763): inversion of binomial distribution
- Pierre Simon Laplace:
 - Practical applications in physical sciences
 - 1812: *Théorie Analytique des Probabilités*
Frequentism and sampling theory

- George Boole (1854), John Venn (1866)
- Sampling from a ‘population’
- Notion of ‘ensembles’
- Andrey Kolmogorov (1930s): axioms of probability
- Applications in social sciences, medicine, natural sciences
Maximum entropy and Bayesian methods

- Statistical mechanics with Ludwig Boltzmann (1868): maximum entropy energy distribution
- Josiah Willard Gibbs (1874–1878)
- Claude Shannon (1948): maximum entropy in frequentist language
- Edwin Thompson Jaynes: Bayesian re-interpretation
- Harold Jeffreys (1939): standard work on (Bayesian) probability
- Richard T. Cox (1946): derivation of probability laws
- Computers: flowering of Bayesian methods
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Probability = frequency

Straightforward:
- Number of 1s in 60 dice throws \(\approx 10 \): \(p = 1/6 \)
- Probability of plasma disruption \(p \approx N_{\text{disr}} / N_{\text{tot}} \)

Less straightforward:
- Probability of fusion electricity by 2050?
- Probability of mass of Saturn 90 \(m_A \leq m_S < 100 m_A \)?
Populations vs. sample

- **PARAMETER**
 - Population mean (μ)
 - Population standard deviation (σ)

- **STATISTIC**
 - Sample mean (\bar{x})
 - Sample standard deviation (s)

We want to know about these
We have these to work with

(Random) Selection

Population

Sample
E.g. weight \(w \) of Belgian men: unknown but \textit{fixed} for every individual

- Average weight \(\mu_w \) in population?

- \textit{Random variable} \(W \)

- Sample: \(W_1, W_2, \ldots, W_n \)

- Average weight: \textit{statistic} (estimator) \(\overline{W} \)

- Central limit theorem:

\[
W \sim p(W|\mu_w, \sigma_w) \Rightarrow \overline{W} \sim \mathcal{N}(\mu_w, \sigma_w / \sqrt{n})
\]
Maximum likelihood (ML) principle:

\[
\hat{\mu}_w = \arg \max_{\mu_w \in \mathbb{R}^+} p(W_1, \ldots, W_n | \mu_w, \sigma_w)
\]

\[
\approx \arg \max_{\mu_w \in \mathbb{R}^+} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_w}} \exp \left[-\frac{(W_i - \mu_w)^2}{2\sigma_w^2} \right]
\]

\[
= \arg \max_{\mu_w \in \mathbb{R}^+} \frac{1}{\sqrt{2\pi\sigma_w}} \exp \left[-\sum_{i=1}^{n} \frac{(W_i - \mu_w)^2}{2\sigma_w^2} \right]
\]

ML estimator (known \(\sigma_w\)):

\[
\hat{\mu}_w = \bar{W} = \frac{1}{n} \sum_{i=1}^{n} W_i
\]
Frequentist hypothesis testing

- Weight of Dutch men compared to Belgian men (populations)
- Observed sample averages $\overline{W}_{NL}, \overline{W}_{BE}$
- **Null hypothesis** H_0: $\mu_{w,NL} = \mu_{w,BE}$
- Test statistic:
 $$\frac{\overline{W}_{NL} - \overline{W}_{BE}}{\sigma_{W_{CZ}-W_{BE}}} \sim \mathcal{N}(0, 1) \quad \text{(under } H_0)$$

![Normal distribution with z = 1.96 and p = 0.05]
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Statistical (aleatoric) vs. epistemic uncertainty?

Every piece of information has uncertainty

Uncertainty = lack of information

Observation may reduce uncertainty

Probability (distribution) quantifies uncertainty
Example: physical sciences

- Measurement of physical quantity

- Origin of stochasticity:
 - Apparatus
 - Microscopic fluctuations

- Systematic uncertainty is assigned a probability distribution

- E.g. coin tossing, voltage measurement, probability of hypothesis vs. another, ...

- Bayesian: no random variables
What is probability?

- **Objective Bayesian view**
- **Probability** = real number $\in [0, 1]
- Always conditioned on known information
- **Notation:**
 \[p(A|B) \] or \[p(A|I) \]
- **Extension of logic:** measure of degree to which B implies A
- **Degree of plausibility**, but subject to consistency
- **Same information** \Rightarrow **same probabilities**
- **Probability distribution:** outcome \rightarrow probability
Joint, marginal and conditional distributions

$p(x, y), p(x), p(y), p(x|y), p(y|x)$
Example: normal distribution

- Normal/Gaussian _probability density function_ (PDF):

\[
p(x|\mu, \sigma, I) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]
\]

- Probability \(x_1 \leq x < x_1 + dx \)
- Inverse problem: \(\mu, \sigma \) given \(x \)?
Bayes’ theorem

\[p(\theta|x, I) = \frac{p(x|\theta, I)p(\theta|I)}{p(x|I)} \]

- **Likelihood**: misfit between model and data
- **Prior** distribution: ‘expert’ or diffuse knowledge
- **Evidence**:
 \[p(x|I) = \int p(x, \theta|I) \, d\theta = \int p(x|\theta, I)p(\theta|I) \, d\theta \]
- **Posterior** distribution
Bayes’ theorem

\[p(\theta|x, I) = \frac{p(x|\theta, I)p(\theta|I)}{p(x|I)} \]

- **Likelihood**: misfit between model and data
- **Prior** distribution: ‘expert’ or diffuse knowledge
- **Evidence**:
 \[p(x|I) = \int p(x, \theta|I) \, d\theta = \int p(x|\theta, I)p(\theta|I) \, d\theta \]
- **Posterior** distribution
Bayes’ theorem

\[p(\theta|x, I) = \frac{p(x|\theta, I)p(\theta|I)}{p(x|I)} \]

- **Likelihood**: misfit between model and data
- **Prior** distribution: ‘expert’ or diffuse knowledge
- **Evidence**:
 \[p(x|I) = \int p(x, \theta|I) \, d\theta = \int p(x|\theta, I)p(\theta|I) \, d\theta \]
- **Posterior** distribution
Bayes’ theorem

\[p(\theta|x, I) = \frac{p(x|\theta, I)p(\theta|I)}{p(x|I)} \]

- **Likelihood**: misfit between model and data
- **Prior** distribution: ‘expert’ or diffuse knowledge
- **Evidence**:
 \[p(x|I) = \int p(x, \theta|I) \, d\theta = \int p(x|\theta, I)p(\theta|I) \, d\theta \]
- **Posterior** distribution

\(x = \text{data vector} \)
\(\theta = \text{vector of model parameters} \)
\(I = \text{implicit knowledge} \)
Practical considerations

- Updating state of knowledge = learning
- ‘Uninformative’ prior (distribution)
- Assigning uninformative priors:
 - Transformation invariance (Jaynes ’68): e.g. uniform for location variable
 - Principle of indifference
 - Testable information: maximum entropy
 - …
Mean of a normal distribution: uniform prior

- \(n \) measurements \(x_i \rightarrow x \)
- Independent and identically distributed \(x_i \):

\[
p(x|\mu, \sigma, I) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]

- Bayes’ rule:

\[
p(\mu, \sigma|x, I) \propto p(x|\mu, \sigma, I)p(\mu, \sigma|I)
\]

- Suppose \(\sigma \equiv \sigma_e \rightarrow \) delta function
- Assume \(\mu \in [\mu_{\text{min}}, \mu_{\text{max}}] \rightarrow \) uniform prior:

\[
p(\mu|I) = \begin{cases}
1, & \text{if } \mu \in [\mu_{\text{min}}, \mu_{\text{max}}] \\
\mu_{\text{max}} - \mu_{\text{min}}, & \text{otherwise}
\end{cases}
\]

- Let \(\mu_{\text{min}} \rightarrow -\infty, \mu_{\text{max}} \rightarrow +\infty \Rightarrow \text{improper prior} \)
- Ensure proper posterior
Posterior for μ

- Posterior:
 \[
p(\mu|x, I) \propto \exp \left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma_e^2} \right]
 \]

- Define
 \[
 \bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i, \quad (\Delta x)^2 \equiv \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
 \]

- Adding and subtracting $2n\bar{x}^2$ (‘completing the square’),
 \[
p(\mu|x, I) \propto \exp \left\{ -\frac{1}{2\sigma_e^2/n} \left[(\mu - \bar{x})^2 + (\Delta x)^2 \right] \right\}
 \]

- Retaining dependence on μ,
 \[
p(\mu|x, I) \propto \exp \left[-\frac{(\mu - \bar{x})^2}{2\sigma_e^2/n} \right]
 \]

- $\mu \sim N(\bar{x}, \sigma_e^2/n)$
Mean of a normal distribution: normal prior

- Normal prior: \(\mu \sim \mathcal{N}(\mu_0, \tau^2) \)
- Posterior:

\[
p(\mu|x,I) \propto \exp \left[-\frac{\sum_{i=1}^{n}(x_i - \mu)^2}{2\sigma^2_e} \right] \times \exp \left[-\frac{(\mu - \mu_0)^2}{2\tau^2} \right]
\]

- Expanding and completing the square,

\[
\mu \sim \mathcal{N}(\mu_n, \sigma_n^2),
\]

where

\[
\mu_n \equiv \sigma_n^2 \left(\frac{n}{\sigma^2_e} \bar{x} + \frac{1}{\tau^2} \mu_0 \right) \quad \text{and} \quad \mu_n \equiv \sigma_n^2 \left(\frac{n}{\sigma^2_e} + \frac{1}{\tau^2} \right)^{-1}
\]

- \(\mu_n \) is weighted average of \(\mu_0 \) and \(\bar{x} \)
Intrinsic part of Bayesian theory, enabling coherent learning

High-quality data may be scarce

Regularization of ill-posed problems (e.g. tomography)

Prior can retain influence: e.g. regression with errors in all variables
Repeated measurements \rightarrow information on σ

Scale variable $\sigma \rightarrow$ **Jeffreys' scale prior**:

$$p(\sigma | I) \propto \frac{1}{\sigma}, \quad \sigma \in]0, +\infty[$$

Posterior:

$$p(\mu, \sigma | x, I) \propto \frac{1}{\sigma^n} \exp \left[- \frac{(\mu - \bar{x})^2 + (\Delta x)^2}{2\sigma^2 / n} \right] \times \frac{1}{\sigma}$$
Marginalization = integrating out a (nuisance) parameter:

\[p(\mu | x, I) = \int_0^{+\infty} p(\mu, \sigma | x, I) \, d\sigma \]

\[\propto \int_0^{+\infty} \frac{1}{2} \left[\frac{(\mu - \bar{x})^2 + (\Delta x)^2}{2/n} \right]^{-n/2} s^{n-1} e^{-s} \, ds \]

\[= \frac{1}{2} \Gamma \left(\frac{n}{2} \right) \left[\frac{(\mu - \bar{x})^2 + (\Delta x)^2}{2/n} \right]^{-n/2} \]

where

\[s \equiv \frac{(\mu - \bar{x})^2 + (\Delta x)^2}{2\sigma^2/n} \]
Marginal posterior for μ (2)

- After normalization:

$$p(\mu|x, I) = \frac{\Gamma \left(\frac{n}{2} \right)}{\sqrt{\pi (\Delta x)^2 \Gamma \left(\frac{n-1}{2} \right)}} \left[1 + \frac{(\mu - \bar{x})^2}{(\Delta x)^2} \right]^{\frac{-n}{2}}$$

- Changing variables,

$$t \equiv \frac{(\mu - \bar{x})^2}{\sqrt{(\Delta x)^2 / (n-1)}}$$

$$p(t|x, I) dt \equiv p(\mu|x, I) d\mu,$$

$$p(t|x, I) = \frac{\Gamma \left(\frac{n}{2} \right)}{\sqrt{(n-1)\pi \Gamma \left(\frac{n-1}{2} \right)}} \left[1 + \frac{t^2}{n-1} \right]^{\frac{-n}{2}}$$

- Student’s t-distribution with parameter $\nu = n - 1$

- If $n \gg 1$,

$$p(\mu|x, I) \rightarrow \frac{1}{\sqrt{2\pi(\Delta x)^2 / n}} \exp \left[-\frac{(\mu - \bar{x})^2}{2(\Delta x)^2 / n} \right]$$
Marginal posterior for σ

- Marginalization of μ:

$$p(\sigma|x,I) = \int_{-\infty}^{+\infty} p(\mu, \sigma|x,I) \, d\mu$$

$$\propto \frac{1}{\sigma^n} \exp \left[-\frac{(\Delta x)^2}{2\sigma^2/n}\right]$$

- Setting $X \equiv n(\Delta x)^2/\sigma^2$,

$$p(X|x,I) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} X^{\frac{k}{2}-1} e^{-\frac{X}{2}}, \quad k \equiv n - 1$$

- χ^2 distribution with parameter k
The Laplace approximation (1)

- Laplace (saddle point) approximation of distributions around the mode (= maximum)
- E.g. marginal for μ:

$$p(\mu|x, I) = \frac{\Gamma \left(\frac{n}{2} \right)}{\sqrt{\pi(\Delta x)^2 \Gamma \left(\frac{n-1}{2} \right)}} \left[1 + \frac{(\mu - \bar{x})^2}{(\Delta x)^2} \right]^{-\frac{n}{2}}$$

- Taylor expansion around mode:

$$\ln[p(\mu|x, I)] \approx \ln[p(\bar{x}|x, I)] + \frac{1}{2} \frac{d^2(\ln p)}{d\mu^2} \bigg|_{\mu=\bar{x}} (\mu - \bar{x})^2$$

$$= \ln \left[\Gamma \left(\frac{n}{2} \right) \right] - \ln \left[\Gamma \left(\frac{n-1}{2} \right) \right] - \frac{1}{2} \ln \left[\pi(\Delta x)^2 \right] - \frac{n}{2(\Delta x)^2} (\mu - \bar{x})^2$$
The Laplace approximation (2)

On the original scale:

\[p(\mu|x, I) \approx \frac{\Gamma \left(\frac{n}{2} \right)}{\Gamma \left(\frac{n-1}{2} \right)} \frac{1}{\sqrt{\pi (\Delta x)^2}} \exp \left[- \frac{(\mu - \bar{x})^2}{2(\Delta x)^2 / n} \right] \]

Standard deviation \(\sigma_L \) \(\rightarrow \) curvature of \(\ln p \):

\[\sigma_L = \left. \left[- \frac{d^2 (\ln p)}{d\mu^2} \right] \right|_{\mu = \bar{x}} \right]^{-1/2} \]
Laplace approximation: example 1
Laplace approximation: example 2
Multivariate Laplace approximation

- For $\theta = [\theta_1, \ldots, \theta_p]^t$,

 $$p(\theta|\theta_0, I) \propto \exp \left[\frac{1}{2} (\theta - \theta_0)^t \left[\nabla \nabla (\ln p) \right]_{\theta=\theta_0} (\theta - \theta_0) \right]$$

- $\nabla \nabla (\ln p)$: Hessian matrix, where

 $$\Sigma_L = - \left\{ \left[\nabla \nabla (\ln p) \right]_{\theta=\theta_0} \right\}^{-1}$$
Model comparison (hypothesis testing)

- Let \(\{H_i\} \) be complete set of hypotheses
- Data \(D \) to support or reject hypotheses
- Bayes’ rule:
 \[
p(H_i|D,I) = \frac{p(D|H_i,I)p(H_i|I)}{p(D|I)}, \quad p(D|I) = \sum_i p(D|H_i,I)p(H_i|I)
\]
- Assume single hypothesis \(H \) and complement \(\overline{H} \)
- **Odds ratio** \(o \):
 \[
o \equiv \frac{p(H|D,I)}{p(\overline{H}|D,I)} = \frac{p(D|H,I)}{p(D|\overline{H},I)} \frac{p(H|I)}{p(\overline{H}|I)}
\]
 Bayes factor \quad Prior odds
E.g. n measurements x_i of a quantity x

Assume normal distribution with known variance σ^2

Question: are the data compatible with mean $\mu = \mu_0$?

- Yes: H
- No: \overline{H}

Under H:

$$p(\bar{x}|H, I) = C \exp \left[-\frac{1}{2\sigma^2/n} (\bar{x} - \mu_0)^2 \right]$$

Under \overline{H}:

$$p(\bar{x}|\overline{H}, I) = \int p(\bar{x} | \mu, \sigma, I) p(\mu | \overline{H}, I) \, d\mu$$

(1)
Assume bounds μ_{min} and μ_{max}:

$$p(\mu|H,I) = \frac{1}{|\mu_{\text{max}} - \mu_{\text{min}}|} 1(\mu_{\text{min}} \leq \mu \leq \mu_{\text{max}})$$

Then (1) becomes

$$p(\bar{x}|H,I) = \frac{C}{|\mu_{\text{max}} - \mu_{\text{min}}|} \int_{\mu_{\text{min}}}^{\mu_{\text{max}}} \exp \left[-\frac{1}{2\sigma^2/n} (\bar{x} - \mu)^2 \right] \, d\mu$$

With $\text{SE} \equiv \sigma / \sqrt{n} =$ standard error, assume

$$|\bar{x} - \mu_{\text{min}}|, |\bar{x} - \mu_{\text{max}}| \gg \text{SE}$$
Testing a Gaussian mean (3)

- Then

\[p(\bar{x}|H, I) \approx \frac{C}{|\mu_{\text{max}} - \mu_{\text{min}}|} \int_{-\infty}^{+\infty} \exp \left[- \frac{1}{2\sigma^2/n} (\bar{x} - \mu)^2 \right] d\mu \]

\[= \frac{C \ SE \ \sqrt{2\pi}}{|\mu_{\text{max}} - \mu_{\text{min}}|} \]

- Bayes factor BF:

\[BF = \frac{p(\bar{x}|H, I)}{p(\bar{x}|H, I)} = \frac{|\mu_{\text{max}} - \mu_{\text{min}}|}{SE} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \]

\[z \equiv \frac{\bar{x} - \mu_0}{SE} \]

- Cf. frequentist hypothesis test
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Monte Carlo sampling

- (Strong) nonlinearities through prior or likelihood
- Skewed, heavy-tailed, multimodal
- Sampling (simulating) from distributions p
- Estimate properties of p
- Marginalization: sampling from joint distribution → sampling from marginals
Markov chain Monte Carlo (MCMC) (1)

- **Metropolis-Hastings** sampling, **Gibbs** sampling

- Simple algorithms, but implementation issues might arise

- **Target distribution** $\pi(\theta|I)$

- **Markov chain** $\theta^{(t)}$: conditional on last state

- Sample from **proposal distribution**
Subchains sample from corresponding marginals

Monte Carlo averages, e.g.

\[\bar{\theta}_j = \frac{1}{n} \sum_{i=1}^{n} \theta_j^{(t_c+i)}, \quad (\Delta \theta_j)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_j^{(t_c+i)} - \bar{\theta}_j \right)^2 \]
1. At $t = 0$, start from $\theta^{(t)} = \begin{bmatrix} \theta_1^{(t)}, \theta_2^{(t)}, \ldots, \theta_p^{(t)} \end{bmatrix}^t$

2. repeat

3. for $j = 1$ to p

 \[y \sim q_j \left(\eta \bigg| \theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, \theta_j^{(t)}, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)}, \mathbf{I} \right) \]

 \[\theta_j^{(t+1)} = \begin{cases}
 y, & \text{with probability } \rho \\
 \theta_j^{(t)}, & \text{with probability } 1 - \rho
 \end{cases} \]

4. end
Metropolis-Hastings algorithm (2)

- **Acceptance probability:**

\[
\rho \left(y, \theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, \theta_j^{(t)}, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)} \right) \\
\equiv \min \left\{ 1, \frac{\pi \left(\theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, y, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)}, I \right)}{\pi \left(\theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, \theta_j^{(t+1)}, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)}, I \right)} \times \frac{q_j \left(\theta_j^{(t)} \mid \theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, y, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)}, I \right)}{q_j \left(\theta_j^{(t)} \mid \theta_1^{(t+1)}, \theta_2^{(t+1)}, \ldots, \theta_{j-1}^{(t+1)}, \theta_j^{(t)}, \theta_{j+1}^{(t)}, \ldots, \theta_p^{(t)}, I \right)} \right\}
\]

- **Example:**

\[
q_j \left(\eta \mid \theta_j^{(t+1)}, I \right) \propto \exp \left[-\frac{\left(\eta - \theta_j^{(t)} \right)^2}{2\sigma_j^2} \right]
\]
MCMC example
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Classification or clustering

Binary classification:

Multi-class classification:
Simple Bayesian classification

- M clusters of in total n data points x_i in P-dimensional space
- Known class labels ω_j ($j = 1, \ldots, M$) of x_i
- Bayes’ rule for new point x:

$$p(\omega_j|x, I) = \frac{p(x|\omega_j, I)p(\omega_j|I)}{p(x|I)}$$

- Maximum a posteriori (MAP) classification rule for x:

Assign x to $\omega_i = \arg \max_{\omega_j} p(\omega_j|x, I) = \arg \max_{\omega_j} p(x|\omega_j, I)p(\omega_j|I)$
Examples of priors and likelihoods

- **Examples of prior probabilities (indifference):**
 - \(p(\omega_i|I) = p(\omega_j|I), \forall i, j \)
 - Count class membership:
 \[
 p(\omega_i|I) \equiv \frac{n_i}{n}, \quad i = 1, \ldots, M
 \]

- **Examples of likelihoods:**
 - **Naive Bayesian classifier:**
 \[
 p(x|\omega_i) = \prod_{k=1}^{p} p(x_k|\omega_i), \quad i = 1, \ldots, M
 \]
 - Multivariate Gaussian:
 \[
 p(x|\omega_j, I) = \frac{1}{(2\pi)^{p/2}|\Sigma_j|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_j)^t \Sigma_j^{-1} (x - \mu_j) \right]
 \]
Optimality of Bayesian classifier

Bayesian classifier minimizes probability of misclassification
Bayesian classifier minimizes probability of misclassification.
MAP classification: decision surfaces

- **MAP**: maximize w.r.t. ω_j:
 \[
 \ln p(\omega_j | x, I) = \ln p(x | \omega_j, I) + \ln p(\omega_j | I)
 \]

- Define ($M = 2$):
 \[
 g(x) \equiv \ln p(\omega_1 | x, I) - \ln p(\omega_2 | x, I)
 \]

- For normal likelihood:
 \[
 g(x) = \frac{1}{2} \left(x^t \Sigma_2^{-1} x - x^t \Sigma_1^{-1} x \right) + \mu_1^t \Sigma_1^{-1} x - \mu_2^t \Sigma_2^{-1} x
 \]

- Constant:
 \[
 -\frac{1}{2} \mu_1^t \Sigma_1^{-1} \mu_1 + \frac{1}{2} \mu_2^t \Sigma_2^{-1} \mu_2 + \frac{1}{2} \ln \frac{\Sigma_2}{\Sigma_1} + \ln \frac{p(\omega_1 | I)}{p(\omega_2 | I)}
 \]

- $g(x)$ separates classes: **decision hypersurface**
Discriminant analysis
Quadratic discriminant analysis (QDA)

Linear discriminant analysis (LDA): $\Sigma_1 = \Sigma_2$
ELM type classification

\[P_{\text{input}} - 1.41 \Gamma_{D_2} = 7.47 \]

A. Shabbir et al., Fusion Eng. Des. 123, 717, 2017
Minimum distance classifiers (1)

- Linear classifier with normal likelihood ($\Sigma_1 = \Sigma_2 \equiv \Sigma$):

 $$g(x) = \theta^t(x - x_0) = 0,$$
 $$\theta \equiv \Sigma^{-1}(\mu_1 - \mu_2)$$
 $$x_0 \equiv \frac{1}{2}(\mu_1 + \mu_2) - \ln \frac{p(\omega_1|I)}{p(\omega_2|I)} \frac{\mu_1 - \mu_2}{\|\mu_1 - \mu_2\|_{\Sigma^{-1}}}$$
 $$\|\mu_1 - \mu_2\|_{\Sigma^{-1}} \equiv \sqrt{(\mu_1 - \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2)}$$

- Mahalanobis distance

- $p(\omega_1|I) = p(\omega_2|I) \Rightarrow$ Minimum Mahalanobis distance classifier (to cluster centroid)

- $\Sigma = \sigma^2 I \Rightarrow$ Minimum Euclidean distance classifier

- k-nearest neighbor classification (kNN)
Minimum distance classifiers (2)
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Multilinear regression model

- Regression model:
 \[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \epsilon \]
 \[\epsilon \sim \mathcal{N}(0, \sigma^2), \sigma \text{ known} \]

- Negligible uncertainty on \(x_j \)

- Likelihood:
 \[p(y|x, \beta, \sigma, I) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2\sigma^2} \left(y - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 \right], \]
 \[\beta \equiv [\beta_0, \beta_p^t]^t, \quad \beta_p \equiv [\beta_1, \ldots, \beta_p]^t \]
Maximum likelihood solution

- Take \(n \) measurements:

\[
y = [y_1, \ldots, y_n]^t
\]

\[
X \equiv \begin{bmatrix}
1 & x_{11} & \cdots & x_{1p} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & \cdots & x_{np}
\end{bmatrix}
\]

- Conditional independence:

\[
p(y|X, \beta, \sigma, I) = (2\pi)^{-n/2}\sigma^{-n} \exp\left[-\frac{1}{2\sigma^2}(y - X\beta)^t(y - X\beta)\right]
\]

- ML: maximize w.r.t. \(\beta \):

\[
0 = \nabla_\beta (y - X\beta)^t(y - X\beta) = -2X^ty + 2X^tX\beta
\]

\[
\Rightarrow \quad \beta_{ML} = (X^tX)^{-1}X^ty = \beta_{LS}
\]

Moore-Penrose pseudoinverse
MAP solution and posterior

- Uniform priors on β_j (not the most uninformative!):

 $$p(\beta|y, X, \sigma, I) \propto \exp \left[-\frac{1}{2\sigma^2} (y - X\beta)^t(y - X\beta) \right]$$

- Due to linearity and Gaussianity: $\beta_{MAP} = \beta_{ML} = \beta_{LS}$

- Taylor expansion (exact!):

 $$\begin{align*}
 (y - X\beta)^t(y - X\beta) &= (y - X\beta_{MAP})^t(y - X\beta_{MAP}) \\
 &+ \frac{1}{2}(\beta - \beta_{MAP})^t 2X^tX(\beta - \beta_{MAP})
 \end{align*}$$

- Hence,

 $$p(\beta|y, X, \sigma, I) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \times \exp \left[-\frac{1}{2}(\beta - \beta_{MAP})^t \Sigma^{-1}(\beta - \beta_{MAP}) \right] ,$$

 $$\Sigma \equiv \sigma^2(X^tX)^{-1}$$
New predictions by the model?

Posterior predictive distribution:

\[p(y_{\text{new}}|x_{\text{new}}, y, X, \sigma, I) = \int_{\mathbb{R}^{p+1}} p(y_{\text{new}}, \beta|x_{\text{new}}, y, X, \sigma, I) \, d\beta = \int_{\mathbb{R}^{p+1}} p(y_{\text{new}}|x_{\text{new}}, \beta, I) \, p(\beta|y, X, \sigma, I) \, d\beta \]

But

\[p(y_{\text{new}}|x_{\text{new}}, \beta, I) = \delta(y_{\text{new}} - \beta^t x_{\text{new}}) \]

Fix \(\beta_0 = y_{\text{new}} - \beta_1 x_{\text{new},1} - \cdots - \beta_p x_{\text{new},p} \)
Marginalize over β_p with flat priors:

$$p(y_{new}|x_{new}, y, X, \sigma, I) \propto \sigma^{-n} \int_{\mathbb{R}^p} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left[y_i - y_{new} + \sum_{j=1}^{p} \beta_j (x_{new,j} - x_{ij}) \right]^2 \right\} d\beta_p$$

After (quite some) algebra, one finds simply

$$y_{new,MAP} = \sum_{j=1}^{p} x_{new,j} \beta_{MAP,j} + \beta_{MAP,0}$$

Simpler derivation based on properties of \mathbb{E} and Var

General posterior more complicated!
Overview

1. Origins of probability
2. Frequentist methods and statistics
3. Principles of Bayesian probability theory
4. Monte Carlo computational methods
5. Applications
 - Classification
 - Regression analysis
6. Conclusions and references
Conclusions

- Frequentist vs. Bayesian methods: interpretation of probability

- Bayesian probability: extension of logic to situations with uncertainty

- Posterior probability of parameters or hypotheses

- Numerical approach in general

- Underlies or explains many machine learning techniques
References

- S.B. McGrayne, *The theory that would not die: how Bayes' rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy*, Yale University Press, 2011