Two- and Three-Dimensional Tomography of Radiated Power using Imaging Bolometers in Toroidal Devices

Byron J. Peterson
National Institute for Fusion Science
SOKENDAI

R. Sano (QST), J. H. Jang, S. Oh (NFRI), K. Mukai (NIFS, SOKENDAI), S. N. Pandya (IPR), W. Choe (KAIST), N. Iwama (NIFS)

The 3rd IAEA Technical Meeting on ‘Fusion Data Processing, Validation and Analysis’, 28th to 31st May, 2019, Vienna, Austria. O-16
Outline

- IRVB concept
- Tomography
- 3D tomography in LHD (R. Sano)
 - Bolometer channels and plasma grid definition
 - Initial numerical test with standard linear solver
 - Extension of linear system with prior information
 - 3D reference profile function and iterative optimizer
 - Numerical test and application to experimental data
- 2D tomography on KSTAR (J. H. Jang)
 - KSTAR IRVB setup
 - Tomography technique
 - Phantom reconstruction tests
 - Experimental results
Imaging Bolometer (IRVB) Concept

Calculate P_{rad} from foil T using 2D heat diffusion equation

\[\Omega_{rad} + \Omega_{bb} = \frac{1}{\kappa} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \]

2-D Laplacian

\[\Omega_{bb} = \frac{\varepsilon \sigma_s B (T^4 - T_0^4)}{kt_f} \quad \varepsilon \approx 1 \]

black body cooling term

\[\Omega_{rad} = \frac{P_{rad}}{kt_f l^2} \]

foil thermal diffusivity

foil thermal conductivity

foil thickness

bolometer pixel area

Plasma radiation absorbed by foil

IR measured by camera

Thin foil

copper frame

Thermal diffusion to frame

Tomography problem: line averaged \[\rightarrow \] local information

Plasma parameter distribution (unknown)

Line of Sight Integration (forward problem)

Tomography (Reconstruction) (inverse problem)

Line-integrated data (measurement output)

\[\mathbf{P}_i : \text{Line-integrated detector Field of View (FoV) data} \]

\[\mathbf{H}_{ij} : \text{Projection matrix (i detectors x j plasma voxels)} \]

\[\mathbf{S}_j : 1D, 2D \text{ or } 3D \text{ Plasma parameter distribution grid} \]

Projection matrix, \[\mathbf{H}_{ij} = V_{ij} \Omega_{ij} / 4\pi \]

\[V \text{ - intersecting volume of FoV } i \text{ and S grid } j \]

\[\Omega_{ij} = A_i / l_{ij}^2 \text{ - detector area, } A_i, \text{ solid angle, } \Omega_{ij} \]

⇒ Relation between \(\mathbf{P} - \mathbf{S} \)

⇒ Must be inverted to get \(\mathbf{S} \) from \(\mathbf{P} \)
Outline

- IRVB concept
- Tomography
 - 3D tomography in LHD (R. Sano)
 - Bolometer channels and plasma grid definition
 - Initial numerical test with standard linear solver
 - Extension of linear system with prior information
 - 3D reference profile function and iterative optimizer
 - Numerical test and application to experimental data
 - 2D tomography on KSTAR (J. H. Jang)
 - KSTAR IRVB setup
 - Tomography technique
 - Phantom reconstruction tests
 - Experimental results
IRVBs and plasma voxels are designed as 3D tomography system

Diagnostics (IRVB × 4)
IRVB channels: 1008+1008+560+620=3,196ch

Plasma voxel (grid element) (cylindrical coordinate)
Horizontal (R):
- 5 cm
- 54 divisions (2.4 m < R < 5.1 m)
Vertical (Z):
- 5 cm
- 52 divisions (-1.3 m < Z < 1.3 m)
Toroidal (φ):
- 1 degree
- 360 divisions
Total number of voxels: 1,010,880

ROI (Region of Interest) voxel (tomography target):
masking process, helical periodicity (n=10)
⇒ 16,188 voxels (0° < φ < 18°)

P = HS
P (3196 ch)
S (16188 voxels)
H (3196 × 16188)
3D reconstruction is achieved by standard linear solver for tomography. → But, large number of artifacts should be reduced.

Numerical test

Model (EMC3-EIRENE), S

![Model images](image)

Synthetic image, P

![Synthetic image](image)

Reconstructed, \hat{S} (with 10% noise)

![Reconstructed images](image)

Reconstructed \hat{P}

![Reconstructed image](image)
Standard linear solver is extended by prior information

Standard linear solver (Tikhonov regularization)

Lagrange function

$$\Lambda(S) = \gamma \|CS\|^2 + \frac{||HS - P||^2}{M}$$

- H: Projection matrix
- P: Integrated data
- S: Plasma parameter distribution
- M: Total number of diagnostics channels
- γ: Regularization parameter
- C: Identity matrix

Extended solver (with prior information)

Lagrange function

$$\Lambda(S) = \gamma \|C(S - \alpha m)\|^2 + \frac{||HS - P||^2}{M}$$

- m: Reference profile
- α: Weighting factor

Euclidean distance between reference profile and reconstructed profile

Flow of 3D tomography with prior information

Reference profile is processed as a rough estimation by diagnostics data and knowledge of plasma.

IRVB images \mathbf{P}

Reference processing (fitting)

3D reference profile, \mathbf{m}

Reconstruction (extended)

Reconstruction (standard)

Prior information

Weighting factor α is fixed to 0.5 (by numerical test results)
3D model function is employed for \(\mathbf{m} \) (Reference profile)

Model

\[
PP(r, z, \phi) = \frac{\{(r - R_{\text{center}}) \cos(\phi) - (z \sin(\phi))\}^2}{b^2} + \frac{\{(r - R_{\text{center}}) \sin(\phi) + (z \cos(\phi))\}^2}{a^2}
\]

Definition of ellipse

\((1 - w)^2 \leq PP(r, z, \phi) \leq 1^2\)

\[
S_{\text{model}}(r, z, \phi) = c \left(1 + \gamma_{\text{in-out}} \cos \left(\frac{(R - R_{\text{center}})}{2(R_{\text{center}} - R_{\text{edge}})\pi}\right)\right) \left(1 + \gamma_{\text{peak}} XX(r, z, \phi)\right) \exp \left(-\frac{(PP - (1 - w/2)^2)^2}{(w/2)^2}\right)
\]

Asymmetry part

X-point peaking part

\[
XX(r, z, \phi) = \exp \left(-\frac{\{(R - R_{\text{center}}) \cos(\phi) - (z \pm a(1 - d_x w)) \sin(\phi)\}^2}{2(d_x w a)^2}\right)
\]

\(a\): semi major radius
\(b\): semi minor radius
\(w\): width of radiation region (ratio)
\(R_{\text{center}}\): center of radiation region
\(c\): radiation intensity
\(\gamma_{\text{in-out}}\): asymmetric factor (inboard – outboard)
\(\gamma_{\text{peak}}\): Magnitude of local peak
\(d_x\): Location of local peak

8 free parameters
Reference profile is processed to fit IRVB image to model projection

Initial parameters

\[(b_0, a_0, w_0, \gamma_{i-o0}, \gamma_{p0}, R_0, c_0, d_{x0})\]

\[\text{b-a scan (n x n)}\]

\[(b_1, a_1, w_0, \gamma_{i-o0}, \gamma_{p0}, R_0, c_0, d_{x0})\]

\[\text{w-} \gamma_{a} \text{ scan (n x n)}\]

\[(b_0, a_0, w_1, \gamma_{i-o1}, \gamma_{p0}, R_0, c_0, d_{x0})\]

\[\text{\(\gamma_p - d_X\) scan (n x n)}\]

\[(b_0, a_0, w_0, \gamma_{i-o0}, \gamma_{p1}, R_0, c_0, d_{x1})\]

\[\text{R scan(n)}\]

\[(b_0, a_0, w_0, \gamma_{i-o0}, \gamma_{p0}, R_1, c_0, d_{x0})\]

\[\text{c scan (n)}\]

\[(b_0, a_0, w_0, \gamma_{i-o0}, \gamma_{p0}, R_0, c_1, d_{x0})\]

Normalized experimental Image (IRVB data) \[\textbf{P}\]

Normalized model projection (Model) \[\textbf{H}_m\]

Mean square error, \(\varepsilon_n^2\), (normalized)

Iteration until convergence

1st 2nd 3rd

5th 7th 9th

Number of calculation for 1 iteration = \(3n^2 + 2n\) \((n = 5)\)

Parameter scanning is individually carried out for each IRVB (U, L)
Characteristics of source is recovered (numerical test)

3D source profile (EMC3-EIRENE)

\[\phi = 0.5^\circ \]
\[\phi = 9.5^\circ \]

Inboard

Outboard

\[\delta^2 = \frac{\|\hat{S} - S_0\|^2}{\|S_0\|^2} \]

Reconstructed profile \(\delta^2 = 0.717 \)

Reconstructed profile \(\delta^2 = 0.674 \)

Incident radiation power (W)

Radiation power density (W/cm\(^3\))

\[\phi = 0.5^\circ \]
\[\phi = 9.5^\circ \]

\[\delta^2 \text{ (reconstruction error)} \]

\[\delta^2 \text{ (reconstruction error)} \]

Magnetic axis

Far X-point

Near X-point

\[\delta^2 \text{ is reduced by prior information} \]
Experimental reconstruction becomes easily understandable by prior information (artifacts are suppressed)

Standard solver (Tikhonov)
- **Edge radiation**
- **Core radiation (Radiation collapse)**

Extended solver (with prior)
- **Edge radiation**
- **Core radiation (Radiation collapse)**

<table>
<thead>
<tr>
<th>Negative values</th>
<th>Number</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard solver</td>
<td>3299 VOXELS</td>
<td>-111.00</td>
</tr>
<tr>
<td>Extended solver</td>
<td>2731 VOXELS</td>
<td>-60.46</td>
</tr>
<tr>
<td>Standard solver</td>
<td>2684 VOXELS</td>
<td>-52.74</td>
</tr>
<tr>
<td>Extended solver</td>
<td>2493 VOXELS</td>
<td>-39.14</td>
</tr>
</tbody>
</table>
Outline

• IRVB concept
• Tomography
• 3D tomography in LHD (R. Sano)
 • Bolometer channels and plasma grid definition
 • Initial numerical test with standard linear solver
 • Extension of linear system with prior information
 • 3D reference profile function and iterative optimizer
 • Numerical test and application to experimental data
• 2D tomography on KSTAR (J. H. Jang)
 • KSTAR IRVB setup
 • Tomography technique
 • Phantom reconstruction tests
 • Experimental results
KSTAR IRVB setup

IR camera: FLIR SC7600
- NETD: < 25mK
- Frame rate: 105 Hz
- Resolution: 512 x 640 pixels

Foil: Pt
- Size: 0.002 x 70 x 90 mm
- Double side carbon coating
- Photon energy range: $E_{ph} < 7.5$ keV

Bolometer
- Time resolution: 10 ms
- Aperture: 3.5 mm x 3.5 mm
- 24(tor) x 32 (pol) = 384 ch

Tomography: A non-invasive imaging tool for observing the inner structure of the plasmas
- Line-integrated raw data → **tomography is essential**

Reconstruction
Phillips-Thikhonov method
- Minimizing $J = \text{mean squared error} + \text{signal variation}$
 \[J = \frac{|f - W \cdot g|^2}{M} + \gamma |L \cdot g|^2 \]
- P-T solution ($\frac{\partial J}{\partial g_i} = 0$)
 \[g(\gamma) = (W^T \cdot W + M\gamma L^T \cdot L)^{-1} \cdot W^T \cdot f \]
 - g : Reconstructed image
 - γ : Optimal regularization parameter
 - L : Laplacian
- **GCV statistics** : optimized γ
 → **accuracy vs smoothness**
 → high γ : smooth, inaccurate
 → low γ : accurate, unstable to noise

Ill-posed problem
\[f = W \cdot g \]
- f : Line-integrated image
- W : Weight matrix
- g : Local emission profile (2-D)
KSTAR IRVB Tomography setup

✓ Reconstruction grid: \(1.2 < R < 2.4 \text{ m}, \ -1.5 < Z < 1.5 \text{ m}\)
 \(\rightarrow\) Divided by 63 x 150 plasma pixels (2 cm x 2 cm for each)

✓ First wall geometry of KSTAR is applied in tomography code

KSTAR IRVB line of sight
(description for plasma pixel and bolometer pixel)
Phantom reconstruction tests (1)

✓ Accuracy of KSTAR IRVB tomography is validated by reconstruction of various synthetic images (phantoms)

✓ Total radiated power

\[P_{rad} = A_{pixel} \times 2\pi \sum R \cdot \epsilon(R,Z) \]

(\(\epsilon(R,Z) \): emissivity at \((R,Z)\))

✓ Reconstruction error

\[e_{recon} (%) = \left| \frac{\epsilon_{phantom} - \epsilon_{recon}}{\epsilon_{phantom}} \right| \times 100 \]

More complicated phantoms\[^1\] can also be reconstructed well (Above: inter-ELM radiation pattern, below: during ELM)

\[^1\] J. Jang et al, 2018 Curr. Appl. Phys, 18 461
Phantom reconstruction tests (2)

- High reconstruction accuracy near first wall in KSTAR
 → useful for impurity seeding exp. or plasma-divertor detachment

- Phantom reconstruction tests
 - a) D-shape + Hot spots in
 - b) X-point,
 - c) inboard and
 - d) outboard divertor *
 (10% noise added to line-integrated signal)

Spatial resolution of IRVB tomography

✓ Spatial resolution of IRVB tomography

~ 9 cm

: Two gaussian peak with 9 cm gap can be distinguished
(10% noise added to line-integrated signal)
Exp1) ELM mitigation by Kr seeding

- 1.7x10^{19} Kr particles injected
- ELM suppression (~5\tau_E)
- ELM mitigation (~10\tau_E to the end of shot)
 - 50% reduction in \Delta W_{ELM} \times f_{ELM}

IRVB plays crucial role in impurity study in KSTAR
Exp2) ELM suppression by Kr seeding

- 3.5x10^{19} Kr particles injected
- ELM suppression (~4 \tau_E)
- H-L transition

Kr density can be estimated from Kr radiation (D.E. Post et al. 1977)

$P_{rad}(\rho) = n_e(\rho) n_Z(\rho) L_z(T_e(\rho))$

L_z : radiative cooling rate (coronal equilibrium)

IRVB plays crucial role in impurity study in KSTAR
Exp 3) ITB formation by Kr seeding

- Total 5.2x10^{19} Kr particles injected
- ELM mitigation → H-L back transition → ITB formation
- T_i and T_e profiles show strong core peaking
- Relation between Kr and ITB formation is still under investigation
Conclusions

• IRVBs can be applied to toroidal devices for the purpose of 2D and 3D tomography of radiated power
• In helical devices 3D tomography is desirable, but difficult
 • Improvements can be made using prior information
• In a tokamak with a tangential view
 • 2D profiles can be obtained with good spatial resolution in core and divertor by assuming toroidal symmetry
 • Also total power estimates can be provided.
 • In KSTAR IRVB is the only bolometer and is providing both 2D profiles and total power estimates.

Future work

• 2D tomography of radiation in helical devices using IRVBs assuming radiation is constant on a field line
 • Should be applicable to both LHD and W7-X
Noise and signal can be estimated

\[
S_{IRVB} = \eta_{IRVB} N_{bol} = \frac{\sqrt{10k t_f \sigma_{IR}}}{A_f} \sqrt{\frac{N_{bol}^3 f_{bol}^3}{A_f^2 5\kappa^2}}
\]

Foil properties (Pt):
- \(k = 0.716 \text{ W/cmK}\) – foil thermal cond.
- \(\kappa = 0.2506 \text{ cm}^2/\text{s}\) – foil thermal diffusivity
- \(t_f\) – foil thickness
- \(A_f = 48 \text{ cm}^2\) – utilized area of the foil

IR camera properties:
- \(\sigma_{IR} = 15 \text{ mK}\) – IR camera NET
- \(f_{IR}\) – frame rate of IR camera
- \(N_{IR}\) – number of IR pixels

IRVB properties:
- \(A_{bol}\) – pixel area
- \(f_{bol}\) – frame rate of IRVB

IRVB properties:
- \(A_{bol}\) – pixel area
- \(f_{bol}\) – frame rate of IRVB
- \(N_{bol}\) – # of bolometer pixels

\(S_{IRVB}\) – IRVB noise equivalent power density
- \(\eta_{IRVB}\) – IRVB noise equivalent power

\[
SNR = \frac{S_{signal}}{S_{IRVB}} = \frac{\kappa \cos^4 \theta P_{rad} l_{plasma}}{4\pi k f_{bol} \sigma_{IR} l_{ap-f}^2 V_{plasma}} = \frac{\kappa \cos^4 \theta P_{rad} l_{plasma} A_{ap}}{4\pi k f_{bol} \sigma_{IR} l_{ap-f}^2 V_{plasma}} = \sqrt{\frac{f_{IR} N_{IR} A_{bol}^3}{2 A_f f_{bol}^3}}
\]

Plasma parameters:
- \(L_{plasma}\) – length sight line in plasma
- \(P_{rad}\) – total radiated power
- \(V_{plasma}\) – plasma volume

Pinhole camera properties:
- \(A_{ap} = (1.4)^2 A_{bol}\) – area of aperture
- \(l_{ap-f}\) – distance from foil to aperture
- \(\Theta = 10 - 20\) – angle between sightline and aperture

\(S_{signal}\) – estimated radiated power density on foil

\[
\frac{S_{signal}}{S_{IRVB}} = \frac{P_{signal}}{A_{bol}} = \frac{A_{bol}^4 A_{ap} \cos^4 \theta P_{rad} l_{plasma}}{A_{bol} 4 l_{ap-f}^2 V_{plasma}}
\]

Phantom reconstruction tests (2)

- High reconstruction accuracy near first wall in KSTAR
 - useful for impurity seeding exp. or plasma-divertor detachment

- D-shape + Hot spots in b) X-point, c) inboard and d) outboard divertor

Phantom reconstruction tests (+10% noise)

- High reconstruction accuracy near first wall in KSTAR
 - useful for impurity seeding exp. or plasma-divertor detachment

a) D-shape + Hot spots in b) X-point, c) inboard and d) outboard divertor

Spatial resolution of IRVB tomography

- Spatial resolution of IRVB tomography
 - ~ 9 cm
 - Two gaussian peak with 8 cm gap can be distinguished

Phantom

Reconstruction

Phantom

Reconstruction

Radial profiles

50% of peak
Spatial resolution of IRVB (+10% noise)

✓ Spatial resolution of IRVB tomography

~ 9 cm

: Two gaussian peak with 9 cm gap can be distinguished
(10% noise added to line-integrated signal)