Neural Networks for Feature Extraction from Wendelstein 7-X Infra-Red Images

En Route towards Heat Load Control

Böckenhoff, Blatzheim, Niemann, Pisano, Hölbe, Jakuboswki and the W7-X Team
• Dynamic plasma properties ...

• Radial axis shift \[\Delta R(t) = f(n, T) \]

• Rotational transform \[\iota(t) = c \cdot \frac{l_{tor}}{\Theta} + \iota_{CF} \]
Motivation

• Dynamic plasma properties …
 • Radial axis shift \(\Delta R(t) = f(n, T) \)
 • Rotational transform \(\iota(t) = c \cdot \frac{i_{tor}}{\Theta} + \iota_{CF} \)

\[\iota_{CF} = f(I_A, I_B, \ldots) \]
Motivation

• Dynamic plasma properties ...
 • Radial axis shift $\Delta R(t) = f(n, T)$
 • Rotational transform $\iota(t) = c \cdot \frac{l_{tor}}{\Theta} + \iota_{CF}$

\[I_{tor} = l_{bs} \cdot e^{-t/\tau} \]
Motivation

• Dynamic plasma properties ...
 • Radial axis shift \[\Delta R(t) = f(n, T) \]
 • Rotational transform \[\iota(t) = c \cdot \frac{I_{\text{tor}}}{\Theta} + \iota_{CF} \]

• ... affect the PFC heat load
 ➢ Potential excessive heat loads \(q > q_d \)
 ➢ Altered performance (detachment, pumping, ...)

Avoid

Optimize / Control
Motivation

• Dynamic plasma properties ...
 • Radial axis shift \(\Delta R(t) = f(n, T) \)
 • Rotational transform \(\iota(t) = c \cdot \frac{I_{\text{tor}}}{\Theta} + \iota_{CF} \)

• ... affect the PFC heat load
 ➢ Potential excessive heat loads \(q > q_d \)
 ➢ Altered performance (detachment, pumping, ...)

➢ Long term objective: Real time heat load control
 ➢ PFC integrity
 ➢ Performance optimization
Motivation

• Dynamic plasma properties ...
 • Radial axis shift \(\Delta R(t) = f(n, T) \)
 • Rotational transform \(\iota(t) = c \cdot \frac{I_{\text{tor}}}{\Theta} + \iota_{CF} \)

• ... affect the PFC heat load
 ➢ Potential excessive heat loads \(q > q_d \)
 ➢ Altered performance (detachment, pumping, ...)

➢ Long term objective: Real time heat load control
 ➢ PFC integrity
 ➢ Performance optimization

• Missing real time estimation of \((\iota, \Delta R)\)
 ➢ Real time feature extraction \((\iota, \Delta R)\) diagnostic as add-on to IR-Cameras
Introduction

1. \(\iota \) reconstruction from limiter heat loads
2. \(\iota, \Delta R \) reconstruction from divertor heat loads
3. Conclusion / Outlook

Focus:
- Training Data generation and investigation
- NN input optimization
- Architecture experiments
OP 1.1

l scan with first limiter plasmas

$l = ...$
OP 1.1 Setup
Data Set(s)

- \(\zeta \) Scan („Config. J“ – Op1.1)
Data Set(s)

• ι Scan ("Config. J" – Op1.1)
 • Sparse Experimental Data:
 - Only 6 distinct magnetic configurations

Infrared

Data Set Size

|\mathbb{I}| = 319

|\mathcal{S}| = 3993
Data Set(s)

• t Scan ("Config. J" – Op1.1)
 • Sparse Experimental Data:
 ➢ Only 6 distinct magnetic configurations

Infrared

\[\mathbb{I} \]

4

... \[I_B \]

\[t \]

Synthetic

\[S \]

1000

FDL Parameters

\[n_{tot} = 25 \times 10^3 \]
\[\lambda = 0.1 \text{ m} \]
\[v = 1.4 \times 10^5 \text{ m s}^{-1} \]
\[D_\perp = 1 \text{ m}^2 \text{ s}^{-1} \]

Data Set Size

\[|\mathbb{I}| = 319 \]
\[|S| = 3993 \]
Data Set(s)

• \(\iota \) Scan ("Config. J" – Op1.1)
 • Sparse Experimental Data:
 ➢ Only 6 distinct magnetic configurations
 • Same trend but systematic differences in Simulations vs. Experiment

<table>
<thead>
<tr>
<th>Data Set Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

\[|\iota| = 319 \]
\[|S| = 3993 \]

\(n_{tot} = 25 \times 10^3 \)
\(\lambda = 0.1 \text{ m} \)
\(v = 1.4 \times 10^5 \text{ m s}^{-1} \)
\(D_\perp = 1 \text{ m}^2 \text{ s}^{-1} \)
Reconstruction of τ (I_B as proxy) with NN from IR

First Approach:

• NN Training set: \mathbb{I}
Reconstruction of τ (I_B as proxy) with NN from IR

First Approach:
- NN Training set: \[\mathcal{X} \]

Lessons:
- Poor performance
- (too) few data

[Bockenhoff, Blatzheim et. al. NF 2018]
Performance Optimization: Synthetic Data

Optimization:

• NN Training set: \mathcal{S}
Performance Optimization: Synthetic Data

Optimization:

• NN Training set: \mathcal{S}
Performance Optimization: Synthetic Data

Optimization:
• NN Training set: \mathbb{S}

Lessons:
• Worse performance
• Different features in Sim. & Exp.
• NN „overfits“ towards Sim.

[Böckenhoff, Blatzheim et. al. NF 2018]
Performance Optimization: Mixing

Optimization:
- NN Training Set: $\mathcal{M} = \mathcal{S} \cup \mathcal{I}$
- Architecture & Preprocessing:

➢ Convolutional Neural Network (CNN)

Relative error < 5.4%
Optimization:

- NN Training Set: $\mathcal{M} = \mathcal{S} \cup \mathcal{I}$
- Architecture & Preprocessing:
 - Convolutional Neural Network (CNN)

Relative error < 5.4%

[Blatzheim, Böckenhoff et al. NF 2019]
Performance Optimization: Generative Adversarial Network

Optimization:

• **NN Training Set:** \(M = S \cup I \)

• **Architecture & Preprocessing:**
 - Convolutional Neural Network (CNN)
 - Generative adversarial neural network

\[\text{Relative error} < 2.3\% \]

[Blatzheim, Böckenhoff et. al. submitted 2019]
OP 1.2

\(i, \Delta R \) scan with simulated divertor heat loads
OP 1.1 Setup

IRCAM

module 2

module 3

IRCAM

module 1

module 4

module 5
Divertor mapping

- Following physics and engineering constraints
- CNN Input
- Optimized for MC based simulations
 - Factor 20 more training data per time with same statistical significance

[Ref 3]
[Böckenhoff, Blatzheim et. al. NF 2019]
Simulated Data Set

- ~ 30000 Field Line Diffusion Simulations
Simulated Data Set

• ~ 30000 Field Line Diffusion Simulations
Simulated Data Set

\[P_{\text{conv}} = 5 \text{MW} \]

(a) \((I_A, I_B) = (0.00, 0.00)\) i.e. standard reference

(b) \((I_A, I_B) = (0.25, 0.25)\) i.e. low iota reference

(c) \((I_A, I_B) = (-0.23, -0.23)\) i.e. high iota reference

(d) \((I_A, I_B) = (0.10, -0.20)\) i.e. inward shifted reference

(e) \((I_A, I_B) = (-0.14, 0.14)\) i.e. outward shifted reference

[Ref 3]
Overload Evaluation

• Evaluation of PFC integrity
• Reward function for Reinforcement Learning

[Böckenhoff, Blatzheim et al. NF 2019]
\[\psi(t) = c \cdot I_{\text{tor}} \Theta + \psi_{\text{CF}} \] [Ref 3]

Toroidal Current Development

(a)

\[P_{\text{conv}} = 8 \text{ MW} \]
\[\iota(t) = c \cdot \frac{I_{\text{tor}}}{\Theta} + \iota_{CF} \]

Mimicked evolution of \(I_{\text{tor}} \) up to 44 kA

[Hölbe et al. NF 2016]
Toroidal Current Development

\[
\prod_i \Pr(X \leq n_{\text{crit},i} | n_i)
\]

\[I_A, I_B\]

\[P_{\text{conv}} = 8 \text{ MW}\]

[Ref 3]

[Böckenhoff, Blatzheim et. al. NF 2019]
Lessons

• Sweep can possibly mitigate overload arising from I_{tor} evolution
Experiments in NN Depth and Input Parametrization

<table>
<thead>
<tr>
<th>NN</th>
<th>Trainable Parameters</th>
<th>Learning Rate</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF − FC(_{ECl})</td>
<td>23983</td>
<td>0.0005</td>
<td>25</td>
</tr>
<tr>
<td>FF − FC(_{PBI})</td>
<td>270543</td>
<td>0.0010</td>
<td>25</td>
</tr>
<tr>
<td>CNN</td>
<td>63671</td>
<td>0.0005</td>
<td>25</td>
</tr>
<tr>
<td>DCNN</td>
<td>89073</td>
<td>0.0001</td>
<td>100</td>
</tr>
<tr>
<td>DINN</td>
<td>313071</td>
<td>0.0001</td>
<td>100</td>
</tr>
<tr>
<td>IRNN</td>
<td>804804</td>
<td>0.0001</td>
<td>100</td>
</tr>
</tbody>
</table>

- **rmse\(_{total}\)**
 - FF − FC\(_{ECl}\)
 - FF − FC\(_{PBI}\)
 - CNN
 - DCNN
 - DINN
 - IRNN

- **Training Time (\(10^3\) s)**

- cross validation set 1
- cross validation set 2
- cross validation set 3
- cross validation set 4
- cross validation set 5
- Training Time

[Blatzheim, Böckenhoff et. al. submitted to NF 2019]
(\(\tau, \Delta R \)) - Reconstruction

Experiments in NN Depth and Input Parametrization

<table>
<thead>
<tr>
<th>NN</th>
<th>Trainable Parameters</th>
<th>Learning Rate</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF – FC_{ECI}</td>
<td>23983</td>
<td>0.0005</td>
<td>25</td>
</tr>
<tr>
<td>FF – FC_{PBI}</td>
<td>270543</td>
<td>0.0010</td>
<td>25</td>
</tr>
<tr>
<td>CNN</td>
<td>63671</td>
<td>0.0005</td>
<td>25</td>
</tr>
<tr>
<td>DCNN</td>
<td>89073</td>
<td>0.0001</td>
<td>100</td>
</tr>
<tr>
<td>DINN</td>
<td>313071</td>
<td>0.0001</td>
<td>100</td>
</tr>
<tr>
<td>IRNN</td>
<td>804804</td>
<td>0.0001</td>
<td>100</td>
</tr>
</tbody>
</table>

[Ref 4] Blatzheim, Böckenhoff et. al. submitted to NF 2019
(\(\nu, \Delta R\)) - Reconstruction

Relative error < 3%

Relative error < 2%

[Ref 4] Blatzheim, Böckenhoff et. al. submitted to NF 2019
Conclusion

• Achievements:
 • Successfull reconstruction of rotational transform and radial axis shift \((\iota, \Delta R)\) from heat load images
 • Simulation speedup (factor 20)
 • CNNs and further image algorithms applicable
 • Compatible for synthetic and experimental data
 ➢ Improve performance of sparse experimental data!
 • Identification of critical states (overload)

Outlook

• Next steps:
 • Application to experimental divertor data
 • Virtual RL control test
APPENDIX
IR Data pre-processing

Experiment → Dias IR camera

Mapping → Map to CAD using known geometry

Heat-Flux → Solving $\Gamma(t)$ with 1D code THEODOR

Interpolation → Interpolate mesh between pixels

[Fabio Pisano] [Holger Nieman]
Limiter and Divertor Infra-Red (IR) Observation
Conclusion

- Successfull reconstruction of rotational transform and radial axis shift (ι, ΔR) from heat load images
Real Time Heat Load Control: Reinforcement Learning

- **Agent:**
 - Tow independent NNs determine
 - \(Q_\pi(s, a) = r(s_t, a_t) + \gamma \max_{a'} Q_\pi(s', a') \)
 - Loss function for both:
 - \(L = Q_{\pi,1}(s, a) - Q_{\pi,2}(s, a) \)
 - \(a_t = \max_a Q_\pi(s_t) \)

- **States could be**
• **OP 1:**
 - No significant variance in β
 - ι-scan with 6 configurations only (multiple experiments and frames, “config. J”)

• **Curse of dimensionality**
 $\begin{align*}
 (I_1, \ldots, 5, A_B, S_1, S_2, n, T, I_{tor}, E_r, \ldots)
 \end{align*}$
 - Sparse experimental data
 - Clustered data \Rightarrow Inter- / Extrapolation
Data Set(s)

• τ Scan (“Config. J“ – Op1.1)

<table>
<thead>
<tr>
<th>Infrared</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Set Size

$|\mathbb{I}| = 319$

$|\mathbb{S}| = 3993$
Difference in Experimental and Synthetic Data

Synthetic data has broader strike line.

Special Artifacts (e.g. hot spots) can not be resolved but will not appear in simulation.
Strikeline Complexity: Divertor vs Limiter

Plasma – Geometry interaction is less complex for limiter than divertor.

- Divertor Strike Line has more features
- NN performance better on Divertor than on Limiter Strikeline
Heat Load on Limiter

Böckenhoff et al. 2018

Simulation
~ 4000

Experiment
~ 300
Reconstruction of I_B with NN: IR Data

(Ⅱ, Ⅱ, Ⅱ)

Features
- Reconstruction works
- Significant Scattering
- (too) Few Experiments in this iota scan
Reconstruction of I_B with NN: IR Data

$(\bar{I}, \bar{I}, \bar{I})$
Reconstruction of I_B with NN: IR Data

(Π, Π, Π)

Lessons

- Significant Scattering
- (too) Few Experiments
Reconstruction of I_B with NN: Synthetic Data

$\left(S, S, S \right)$

Lessons
- Good Performance
- Only relevant in experimental context
Simulation Trained, Experiment-Tested

$\left(S, S, I \right)$
NN Input Processing

Partitioning

Parametrization
- Center of Mass & Standard Deviation
- Center of Mass & First Main Axis
- Ratio to Maximum Heat Load

2 x 2
Training Mixed Different Parametrizations

(M, M, I)

M = SUI
Training Mixed Different Parametrizations

\((M, M, I)\)

Reconstruction Quality

\(\text{rmse}(M_{90}, M_{10}, I_{C})(\rho)\)
\(\text{rmse}(M_{90}, M_{10}, I_{C})(\mu, \sigma)\)
\(\text{rmse}(M_{90}, M_{10}, I_{C})(\mu, \delta)\)

10\% of \(I_B\) range

Partitioning Resolution:

2 x 1, 4 x 1, 9 x 1, 9 x 5, 15 x 6, 18 x 8, 27 x 10, 36 x 12, 72 x 15, 144 x 30
Training Mixed Different Parametrizations

$\left(M, M, I \right)$

$\text{rmse}(M_{90}, M_{10}, I_C)(\rho)$
$\text{rmse}(M_{90}, M_{10}, I_C)(\mu, \sigma)$
$\text{rmse}(M_{90}, M_{10}, I_C)(\mu, \delta)$

10% of I_B range

Resolution

2×1, 4×1, 9×1, 9×5, 15×6, 18×8, 27×10, 36×12, 72×15, 144×30
Training Mixed Different Parametrizations

$\mathbf{M}, \mathbf{M}, \mathbf{I}$

Graph Details:
- **x-axis:** Resolution
- **y-axis:** rmse
- **Legend:**
 - $\text{rmse}(M_{90}, M_{10}, I_C)$ (ρ)
 - $\text{rmse}(M_{90}, M_{10}, I_C)$ (μ, σ)
 - $\text{rmse}(M_{90}, M_{10}, I_C)$ (μ, δ)
 - 10% of I_B range

Graph Notes:
- The graph shows the rmse for different parametrizations across various resolutions.
- The x-axis represents different resolution sizes.
- The y-axis represents the rmse values, with a logarithmic scale.
- The legend provides details on the different parametrization sets evaluated.
NN learns to only extract relevant features from the simulation.
Representative Performance

\[(M, M, I)\] Median of \(\text{rmse}(M_{90}, M_{10}, I_{C})_{P}^{18 \times 8, \text{Conv}} \)
Neural Networks (Limiter)

Blatzheim et al. 2018
Generative Adversarial Networks

Neural Networks

G: Generator
D: Discriminator

Loss small, if discriminator correct

Loss small, if discriminator incorrect
Basic Regression Approach

Neural Networks
R: Regression
Plasma GAN

Neural Networks
G: Generator
D: Discriminator
R: Regression

Loss small, if discriminator correct
Loss small, if discriminator incorrect
Neural Networks (Divertor)
Neural Networks (Divertor)

Inception ResNet

Experiments with $i = 0$ and $i = 3$
Reinforcement Learning

Reinforcement learning

Interpreter → Agent → Environment

State → Reward → Action

Observation → Reinforcement learning

→ Computer → Gear

24.05.2019

Böckenhoff - Third Technical Meeting on Fusion Data Processing