Design & Development of Real Time Parallel Stream Processing System for KSTAR L/H Transition Detection

Giil Kwon ¹, Gi Wook Shin², Sang Hee Hahn ¹, Sang Won Yun ¹ and Jae Sic Hong ¹

¹ National Fusion Research Institute, Daejeon, Republic of Korea
² University of Science and Technology (UST), Republic of Korea

giilkwon@nfri.re.kr

3rd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis
Outline

• Introduction
• System Overview
• System Configuration
• L/H transition Detection Algorithm
• Software architecture
• Real Time LHML
• Performance test & results
• Summary & Future works
Introduction

- H-mode operation is much more desired than L-mode.
- The density control method need to changed as the plasma mode changes.
 - The fuel from gas injector does not absorbed into plasma due to the edge transport barrier.
- Determining the plasma mode in real time is necessary.
 - The density control devices and algorithm need to be changed as the mode of plasma changes.
- We have developed L/H Transition detection system using ML(LHML).

- KSTAR: Korea Superconducting Tokamak Advanced Research

- Plasma image at KSTAR
• L/H transition detector system using ML(LHML)
ITER Synchronous Databus Network (SDN): the real-time network based on a UDP multicast over a 10-GbE cut-through packet-switching infrastructure

ITER Time Communication Network (TCN): PTP, IEEE 1588, the network for absolute synchronization that is also synchronized with the KSTAR timing system

ITER Plant Operation Network (PON): Industrial Ethernet

ITER Data Archiving Network (DAN): 10 Gb Ethernet for data archiving
L/H transition Detection Algorithm[1,2]

- Phenomena at L→H Transition
 - H_α amplitude abruptly changes
 - Increase of line-averaged density n_e

- Long-Short Term Memory (LSTM)
 - LSTM can learn from sequential data and predict the class of data sequentially. (# of hidden units = 300)
 - Input data point is [H_α, n_e] pair.
 - Down-sampled signals to 10kHz
 - No preprocessing (only rescaling)
 - 78 shot for training/ 26 shots for test set comes from 2017 campaign
 - input layer => LSTM layer => Fully connected layer => softmax layer => classification layer (output)
 - Test set accuracy : 97.8 %

Figure courtesy of Gi Wook SHIN[1]

L/H transition Detection Algorithm[1,2]

- Phenomena at $L \rightarrow H$ Transition
 - H_α Amplitude change timing of signal
 - Increase of line-averaged density $\overline{n_e}$

- Long-Short Term Memory (LSTM)
 - LSTM can learn from sequential data and predict the class of data sequentially. (# of hidden units = 300)
 - Input data point is $[H_\alpha, \overline{n_e}]$ pair.
 - Down-sampled signals to 10kHz
 - No preprocessing(only rescaling)
 - 78 shot for training/ 26 shots for test set comes from 2017 campaign
 - Network layer
 - Test set accuracy : 97.8 %

Software architecture

- **Architecture**
 - **RT-ParaPro** was used to implement LHML.
 - RT-ParaPro is homemade C++ real time data processing library.
 - RT-ParaPro has a jitter of about 8 usec in 10kHz control cycle rate
 - **Consumer and producer pattern** was used.
 - **MRG-R kernel** was used to get real time performance.
 - Each thread is controlled by Finite State Machine (FSM) thread which control other thread according to KSTAR shot sequence information.
• Architecture
 • EPICS channel access is used to control FSM thread and set parameters.
 • OPI was implemented by using Control System Studio (CSS Boy)
 • LHML work with KSTAR central control system with EPICS channel access
 • LHML is automatically executed in accordance with KSTAR shot sequence from KSTAR central control System.
Multiple Data Stream Processing Unit (C++)
- ITER SDN was used to send and receive the data stream.
- Data stream processing unit consists of thread and buffer pair.
- Multi-thread was used to process data in parallel.
- FSM thread control all the other thread life cycle.
- LSTM also implemented in C++ (Eigen library).
Data transfer cycle matching module

- LHML and MMWI diagnostic system run at 1kHz.
 - These systems send/receive the packet at 1kHz.
- The H_α diagnostic system sends the packet which has 8192 data at 25Hz (≈ 25.6Hz).
- To achieve the real-time performance, Resampling thread resamples the data from H_α diagnostic system.
 - Duplicate the first data from H_α diagnostic system 39 (≈ 1kHz/25.6Hz) times into the buffer to fit the cycle of 1kHz.
 - H_α Data resolution degraded.
Performance test & results

• Experiment result
 • 186 shot at 2018 campaign at KSTAR was used
 • Due to the degradation of H_α data resolution, Accuracy is lower than test set result.
 • Due to the Signal level of MMWI changes
 • Density diagnostic DAQ machine changed after training.
 • Retraining and experiment are schedule for 2019 campaign

• Real time performance
 • All RT thread period is consistent.
 • H_α sub thread and H_α resampling thread run at 125Hz (period is 8000 μsec)
 • all the other thread run at 1kHz (1000 μsec)
 • LSTM takes 56 μsec.
 • LSTM run in the process thread.

Tab 1. Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>97</td>
<td>37</td>
</tr>
<tr>
<td>False</td>
<td>48</td>
<td>4</td>
</tr>
</tbody>
</table>

Tab 2. Performance of Classifier

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.72043011</td>
</tr>
<tr>
<td>Precision</td>
<td>0.66896552</td>
</tr>
<tr>
<td>Recall</td>
<td>0.96039604</td>
</tr>
<tr>
<td>F1 Score</td>
<td>0.78861789</td>
</tr>
</tbody>
</table>

Tab 3. Performance of RT Thread

<table>
<thead>
<tr>
<th>Thread</th>
<th>μsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_α Sub</td>
<td>7961.0 1.22 49.0</td>
</tr>
<tr>
<td>\bar{n}_e Sub</td>
<td>999.9 0.37 39.3</td>
</tr>
<tr>
<td>H_α resamp</td>
<td>7959.8 4.89 225.8</td>
</tr>
<tr>
<td>Process</td>
<td>954.8 1.17 73.9</td>
</tr>
<tr>
<td>L/H pub</td>
<td>942.5 3.13 929.2</td>
</tr>
</tbody>
</table>
Performance test & results

• Experiment result

By using H-alpha and MMWI signal, LHML effectively detects the L/H Transition.
• LHML detect the moment when,
 • H_α amplitude changes.
 • The degree of increase of n_e (line-averaged density) changes.
Summary & Future Works

• Summary
 – We have developed real time L/H transition detector system.
 – LHML uses H_α signal, line-averaged density $\overline{n_e}$ signal from H-alpha system and MMWI to estimate L/H mode.
 – LHML uses Long Shot Term Memory Networks (LSTM) to estimate the L/H modes in real time manner.
 – The LHML system receives the data stream, simultaneously processes the data, and sends the result in the form of a data stream.
 – RT-ParaPro was used to implement LHML.
 – LSTM takes 56 usec.

• Future Works
 – Real time H-alpha system (1kHz) will be developed and apply to the system.
 – Retraining with new density diagnostic data and experiment are schedule for 2019 campaign.
Thank you