Predictions of Tokamak Disruptions via AI/Deep Learning Methods with Impact on Advances Scenarios

William M. Tang
Princeton University/Princeton Plasma Physics Laboratory (PPPL)

3rd IAEA Technical Meeting (TM)
on Fusion Data Processing, Validation, & Analysis
Vienna, Austria

May 28-31, 2019

Princeton University / PPPL Fusion AI Team:

Julian Kates-Harbeck (Harvard U/PPPL), Alexey Svyatkovskiy (Princeton /Microsoft)

Eliot Feibush (PPPL/Princeton), Kyle Felker (Princeton/ANL), Ge Dong (Princeton/PPPL)
Artificial Intelligence (AI)

Context: F. Chollet (Google)
“Deep Learning with Python,” Nov. 2018

“Automation of intellectual tasks normally performed by humans”

• general area including Machine and Deep Learning (ML/DL)

• Machine Learning (ML) – focus on training rather than explicit programming

• Deep Learning (DL): Focus on complex data sets with temporal images including multi-pixels

⇒ Requires deployment of stacks of modern Convolutional & Recurrent Neural Networks

⇒ Automated-search (“Hyperparameter Tuning”) usually required for best representations
Success of ITER Requires Sufficiently Low Disruption Rate
Reference: Dave Humphries, GA/DIII-D

- Mid-pulse disruptions eliminate planned discharge time following disruptive event → greatly reduces physics productivity

- Disruptions can require long recovery time → bad for overall shot frequency

- Disruption heat fluxes can reduce component lifetime (e.g. divertor target ablation)

- Damage to in-vessel components can require shutdown for repair

Availability > 80% (during operation periods)
Design target <10% disruptivity
APPLICATION FOCUS FOR AI/DL IN FES

Most Critical Problem for Fusion Energy ➔

Accurately predict, mitigate, & ideally avoid large-scale major disruptions in magnetically-confined thermonuclear plasmas such as the ITER – the $25B international burning plasma “tokamak”

• **Most Effective Approach**: Use of big-data-driven statistical/machine-learning predictions guided by observations for the occurrence of disruptions in world-leading facilities such as EUROFUSION “Joint European Torus (JET)” in UK, DIII-D (US), and other tokamaks worldwide such as KSTAR, EAST, JT60-SA (Asia)

• **Recent Status**: ~10 years of R&D results (led by JET) using Machine Learning (via Support Vector Machines) on zero-D (scalar) time trace data executed on CPU clusters yielding success rates in mid-80 to 90% range for JET 30 ms before disruptions,

BUT > 95% accuracy with false alarm rate < 5% at least 30 milliseconds before actually needed for ITER! Reference – P. DeVries, et al. (2015)
AI/DL/Machine Learning Workflow

Identify Signals
- Classifiers

Preprocessing and feature extraction

Normalization

Train model, Hyper parameter tuning

Use model for prediction

Princeton U/PPPL AI/DL predictions now works with **multi-D time trace signals (beyond zero-D)**

Measured sequential data arranged in patches of equal length for training

All data placed on appropriate **numerical scale \(\sim O(1) \)** e.g., Data-based with all signals divided by their standard deviation

Apply AI/DL/ML software on plasma state signals

- **All** available data analyzed;
- Train LSTM (Long Short Term Memory Network) iteratively;
- Evaluate using **ROC** (Receiver Operating Characteristics) and cross-validation loss for every **epoch** (equivalent of entire data set for each iteration)
Artificial Intelligence/Deep Learning brings new technology to accelerate progress
"Predicting Disruptive Instabilities in Controlled Fusion Plasmas through Deep Learning”
NATURE: (accepted for publication, Jan. 2019, published, April 17, 2019 –
DOI: 10.1038/s41586-019-1116-4)

Princeton’s Fusion Recurrent Neural Network code (FRNN) uses convolutional & recurrent
neural network components to integrate both spatial and temporal information for predicting
disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers
Data flow and summary of the AI/DL FRNN algorithm

→ highlights key challenge of associated plasma control
HIGHLIGHTS OF KEY ACHIEVEMENTS FEATURED IN NATURE PAPER (2019)

- Implementation of modern AI/Deep Learning advances enabled key achievements for Fusion Energy Science including:

1. Establishing ability to deal with one-dimensional physics signals for the first time – a significant improvement over previous Machine Learning R&D with focus on scalar-only “zero-D” signals.
2. First demonstration of crucially-needed ability for predictive software trained on one experimental device (e.g., DIII-D tokamak) to make accurate predictions on another (e.g., the much larger, more powerful JET system) – a key requirement for ITER relevance.
3. Unique demonstration of AI/DL software capability to efficiently utilize leadership class supercomputers -- e.g., Titan, Summit in US; Tsubame-3 in Japan, etc. – and exciting powerful systems in near future such as AURORA-21 (US), ABCI (Japan),
Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False Positives (bad: safe shot incorrectly labeled disruptive).

JET Data (~50 GB), 0D signals:
- Training: on 4100 shots from JET C-Wall campaigns
- Testing 1200 shots from Jet ILW campaigns
- All shots used, no signal filtering or removal of shots

JET Data courtesy of J. Vega and A. Murari
CNNs & RNNs with HPC Innovations Engaged

GPU training
- Neural networks use dense tensor manipulations, efficient use of GPU FLOPS
- Over 10x speedup better than multicore node training (CPU’s)

Distributed Training via MPI

Linear scaling:
- Key benchmark of “time to accuracy”: we can train a model that achieves the same results nearly N times faster with N GPUs

Scalable
- to 100s or >1000’s of GPU’s on Leadership Class Facilities
- TB’s of data and more
- Example: Best model training time on full dataset (~40GB, 4500 shots) of 0D signals training
 - SVM (JET) > 24hrs
 - FRNN (Princeton -- 20 GPU’s) ~40min
FRNN Scaling Results on GPU’s

- Tests on OLCF Titan CRAY supercomputer
 - **OLCF DD AWARD**: Enabled Scaling Studies on *Titan currently up to 6000 GPU’s*
 - Total ~ 18.7K Tesla K20X Kepler GPUs

Tensorflow+MPI

*** FRNN DL/AI software reliably scales to 1K P-100 GPU’s on TSUBAME 3.0 “Grand Challenge Runs” (Tokyo Institute of Technology), Japan

→ associated production runs contribute strongly to Hyper-parameter-Tuning-enabled physics advances!
Hyper-parameter Tuning enabled by HPC

• **Example** → random grid of 100 iterations with 100 GPUs per each trial
 -- Trials run asynchronously to convergence
 -- Distributed training performed with *data-parallel synchronous* “Stochastic Gradient Descent (SGD)” – standard approach in DL applications
 – Master loop determines the best set of parameters based on the validation level

• **Exciting New Trends Emerging** → aggressive large-scale hyper-parameter tuning trials carried out on the “Titan” exhibit very promising potential for shifting the minimum warning time before disruptions to 50 ms and now up to 100 ms and above.

 → *Strongly motivates new HPC-enabled studies enabled by deployment of new half-precision version FRNN* using NVIDIA Volta GPU’s on SUMMIT at ORNL

Significance: *Key to enabling future risk mitigation for ITER via achieving increased pre-disruption warning time*
Cross Machine Disruption Prediction (DIII-D to JET)
First demonstration of predictive DL software trained on one experimental device (DIII-D) to make accurate predictions on another (JET) – critical for ITER

<table>
<thead>
<tr>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRNN 1D</td>
<td>0.836</td>
</tr>
<tr>
<td>FRNN 0D</td>
<td>0.817</td>
</tr>
<tr>
<td>XGBoost</td>
<td>0.616</td>
</tr>
</tbody>
</table>
Integration of HPC (using GTC Exascale Code) with Deep Learning Workflows (using FRNN DL Code)

• “Knowledge & experience” now in place for carrying out path-to-exascale HPC simulations of ITER-relevant burning plasmas with powerful GTC code
 → ESP selection for SUMMIT and 2019 INCITE awardee of 740K SUMMIT Node Hours – 151% above our request!

Example: Neoclassical tearing modes (NTM’s) already experimentally observed in JET, but NO realistic models yet developed as improved pre-disruption classifiers in Machine Learning workflows → because of inability to include measured higher-D profiles (only scalars)

• CNN & RNN allow including realistic 1D & higher-D measurements of profiles to enable first-principles-based reduced models of NTM’s (supported by exascale GTC code) to be used in FRNN workflows.

Example of “integration of HPC with DL”!
DL/AI Vision Summary in Moving from Prediction to Control

ZERO-D to HIGHER-D SIGNALS via CONVOLUTIONAL NEURAL NETS (CNN)

- Enables immediate learning of generalizable features (→ helps enable cross-tokamak portability of DL/AI software)

Control Algorithm

Environment

- Reinforcement learning enables transition from PREDICTION to CONTROL!

- Takes advantage of increasingly powerful world class HPC (supercomputing) facilities!
Control Methods with Containers
Ref: Vallery Lancey, Lead DevOps Engineer, “Checkfront”

- Managing a system using human and internal controls
- Inputs dictate what the controller should do (setpoint)
- Outputs dictate what the controlled process should do
- Closed Loop Container: (i) Contains feedback from the process to the controller; (ii) Controller able to self-correct to achieve desired outcome
Control System Management

Traditional: "Sysadmin" examines the system, makes a judgement, and performs an action.

Automatic: System tracks its own state & translates the state to some internal action.

POSSIBLE FRNN DEPLOYMENT INTO PCS with possible target tokamak facilities @ DIII-D, JET, KSTAR, ...
(A. Svyatkovskiy, Princeton U/PPPL/Microsoft)

Approach under Consideration: Deploy AI/DL/ML FRNN disruption predictor as a "web-like service" within tokamak facilities using modified versions of Microsoft’s “azureml”/Azure Container Service:

1) Train new pre-disruption classifiers with more realistic "reduced HPC-enabled classifiers for NTM’s, ITER-relevant alpha-driven instabilities, etc.

2) Prepare a "helper code" to deploy the model & interact via “RESTful API”—(details under development with Microsoft)

3) This approach has potential to carry out predictions on the order of a few 100 nano-seconds including network latency *
Control Capabilities Needed for Real-Time Experimental Planning
with Dan Boyer, Keith Erickson, ... and especially experimental/advanced diagnostic expertise

• Can we make our models fast & accurate enough?
 --- e.g., via reinforcement learning/inference/
• Can we make our models realistic enough?
 --- e.g., via focused actuator planning with experimental partners
KEY UPCOMING AI/DL PROJECT FOCUS:

➔ Moving from AI/DL-based Tokamak Prediction to real-time Plasma Control:

-- first need to strongly complement AI/DL prediction results (NATURE paper) with dedicated new runs enabled by experimental proposals submitted to DIII-D and JET – plus new ones on long-pulse KSTAR, EAST, and JT-60SA

-- need to begin experimental control studies involving deployment of DL/AI predictors within actual Plasma Control System (PCS) at DIII-D, JET, KSTAR, EAST, & JT60SA

➔ involves reinforcement learning, inference, etc. + deployment of novel actuators developed with strong engagement by diagnostics experts for PCS deployment of AI/DL predictors to initiate control studies.

**** News: US Executive Order signed for huge upcoming investment in ARTIFICIAL INTELLIGENCE/DEEP LEARNING! (Feb.11, 2019)
Reference: Rick Stevens
2019 International Symposium on Simulation, Big-Data, & AI, Kobe, Japan