NSTX-U Advances in Real-time Internode Communications

Keith Erickson1, M. Dan Boyer1, and David Higgins2

11th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research
Greifswald, Germany
May 10, 2017
Outline

• NSTX-U Overview
• NSTX-U Real-time System
• Computing Architecture and Operating Environment
• Expanding the RT System
• Reflective memory technology
• Empirical testing and results
• Summary
NSTX-U Mission Elements:

• Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

• Develop solutions for plasma-material interface (PMI)

• Advance ST as Fusion Nuclear Science Facility and Pilot Plant
NSTX-U will access new physics with 2 major new tools:

New Central Magnet

Higher T, low ν^* from low to high β
→ Unique regime, study new transport and stability physics

Tangential 2nd Neutral Beam

Full non-inductive current drive
→ Not demonstrated in ST at high-β_T
Essential for any future steady-state ST
NSTX-U will have major boost in performance

New Central Magnet

- 2× toroidal field (0.5 → 1T)
- 2× plasma current (1 → 2MA)
- 5× longer pulse (1 → 5s)

Tangential 2nd Neutral Beam

- 2× heating power (5 → 10MW)
 - Tangential NBI → 2× current drive efficiency
- 4× divertor heat flux (→ ITER levels)
- Up to 10× higher nT\(\tau_E\) (~MJ plasmas)

Performance goals:
NSTX-U had scientifically productive 1st run year

- Achieved H-mode on 8th day of 10 weeks of operation
- Surpassed magnetic field and pulse-duration of NSTX
- Matched best NSTX H-mode performance at ~1MA
- Identified and corrected dominant error fields
- Commissioned all magnetic and kinetic profile diagnostics
- New 2nd NBI suppresses Global Alfven Eigenmodes (GAE)
- Implemented techniques for controlled plasma shut down, disruption detection, commissioned new tools for mitigation
- 2016 run ended prematurely due to fault in divertor PF coil
 - Coil + other issues → major reviews of design, fab, procedures
• Analog and digital inputs and outputs cycle synchronously at 5 kHz
• VITA 17(.1) FPDP standard for parallel (serial) communication
• Serial connection allows ~1km distance between the computer and the devices
• Currently ~500 sensors and ~50 actuators
RT Computer Specifications

• Concurrent RedHawk 6.5
• Supermicro H8QGL
 – Opteron 6386 SE 2.8GHz
 – 4x16 cores = 64 cores
 – 64 GB Registered ECC DDR3
• 6 PCIe slots in two banks
 – Serial FPDP I/O (SL-240)
 – Realtime Clock and Interrupt Module (RCIM)
 – CUDA capable video card
 – Dolphin PXH-830
Real-time Computer Architecture

- AMD Opteron 6386 SE
- Kingston Registered ECC Server Memory
- LSI2008 SAS RAID
- Seagate ST1000NM0063 with FIPS 140-2, 1.5Mh MTBF
- CUDA capable GPU
- Concurrent iHawk design
- Concurrent RedHawk Operating System (6.3)
- NightStar development environment
- Realtime Clock and Interrupt Module
Outsourcing OS Expertise Provides Cost-Effective Development Strategy for NSTX-U

• Concurrent Computer Corp. offers RedHawk
 – Based on RedHat (or CentOS)
 – Custom kernel to support deterministic run time behavior
 – NightStar analysis package permits performance optimization

• Concurrent provides custom drivers for COTS hardware
 – Full software support and Return-to-Factory warranty
 – Source code available

• Guaranteed process dispatch latency of less than 10 us
• Removes the need for in-house kernel hacks
• Concurrent support has proven invaluable for NSTX-U
Many-core RT system with development twin served NSTX well for over a decade

1. Multiple technological evolutions
 - SkyBolt I ➤ SkyBolt II ➤ SunFire v40z ➤ iHawk

2. Adding Protection to the RT Control computer has significantly reduced available cores

3. Physics demands require a flexible configuration with more cores at higher clocks
NSTX-U RT CPU Usage

PROTECTION SYSTEM
- 18 Algorithm cores
- 3 I/O cores
- 4 Monitoring cores

CONTROL SYSTEM
- 3 I/O cores
- 4 General Use cores
- 16 rtEFIT “Slow” cores

OPERATING ENVIRONMENT
- 16 User cores (shared)
- 16 OS cores (shared)

25 cores
23 cores
16 cores

64 cores total
RT Computing Expansion Scenarios

Option 1: New AMD System
- AMD left the server market in 2012 following Opteron 6300
- New Zen-based servers not released: Specifications? Reliability?
- No motherboard vendor support yet

Option 2: New Intel System
- More cores, more instructions per clock
- Technology curve lacking: slower clock/core, lackluster gain since 2012
- Cost-prohibitive: E7-8894 is ~$10k per CPU

Option 3: Dolphin Interconnect
- High performance, *deterministic* interface to additional nodes
- Allows continued use of existing assets with scalable growth
- High cost of maintaining twin development systems
Dolphin Interconnect Solutions Supports Multiple Possibilities

- Founded 1992 in Oslo, Norway
- Long history of PCI and PCIe experience
- Product lines used in military aircraft
 - US: F-35
 - France: Rafale
- Products in use in fusion (WEST, etc.)
- Strategic partners with Concurrent for RT deployment
PXH-830 Gen3 PCIe I/O

- Non-transparent bridging host adapter connects two devices (host or switch) using PCIe protocols
- Gen 1/2/3 compatible, up to 16 lanes
- Switches use up to 8 lanes
- Theoretical performance characteristics
 - 32 Gbps per port, 4 ports = 128 Gbps (at Gen3 speeds)
 - 0.54us minimum latency (more on that later…)
 - Transmission distance
 - Copper: 9m
 - Fiber: 100m
NSTX-U Current Interconnection Layout

- NSTX-U Sensors and Actuators
- Development System
- FTC-1
- FTC-2
- FPDP1
- PCS-RT-3
- PCS-SRV-3
- PCS-RT-4
- PCS-SRV-4
- Ethernet Switch
- VLAN
- Warthog
- AT-2
- FPDP2
- A/D
- FPDP
- Ethernet
- Ethernet + IPMI
- Secondary Testing Rig

IAEA 11th TM on CODAC, NSTX-U Advances in Real-time Internode Communications, Erickson, May 2017
NSTX-U Future Interconnection Layout

- **NSTX-U Sensors and Actuators**
- **Proposed Expansion**
- **Dolphin Switch**
 - **PCS-RT-3**
 - **PCS-SRV-3**
- **PCS-RT-5**
- **PCS-RT-6**
- **PCS-RT-N**
- **Ethnernet Switch**
- **FPDP1**
- **Warthog**
- **AT-2**
- **FPDP2**
- **VLAN**
- **Development System**

Legend:
- A/D
- FPDP
- Dolphin
- Ethernet
- Ethernet + IPMI

IAEA 11th TM on CODAC, NSTX-U Advances in Real-time Internode Communications, Erickson, May 2017
Dolphin uses RDMA and Device Sharing

- **RDMA Transport mechanism bandwidth comparison**
 - Ethernet (iWARP, RoCE) ~40 Gbps, 10-25% overhead
 - OpenFabric / InfiniBand ~50-100 Gbps, 5-10% o/h
 - **Dolphin PCIe** ~130 Gbps, 1.5% o/h

- **No CPU, cache, or context switch overhead**
 - Remote Direct Memory Access (RDMA) transfers memory between computers without OS involvement
 - Device Sharing gives remote computers transparent access to PCIe devices

- **Pairing with RedHawk kernel limits jitter to < 2μs**
- **Latency scales linearly with data size**
Communication Path Bypasses CPU

Reflective Memory

[Diagram showing the bypassed communication path between CPU, DDR, Memory Controller, HyperTransport, SR-5690 Northbridge, GPU, PXH-830, and SL240.]
Communication Path Bypasses CPU

Device Sharing (Bridging)
Test Setup

Simulation runs mirroring current NSTX-U design

Simulation runs mirroring future NSTX-U design

- Biggest timing impact of various configurations is Gen2 vs Gen3 PCIe
- This is expected given direct connection between PCIe and memory
- Additional improved timing from copy modes vs size

Server

Client

Min Latency

1.7μs

1.3μs

0.5μs

Setup

- CPU Shielding
- RT Scheduler
- RT Priority
- Locked memory

Mini-SAS direct
Latency of Increasing Inter-host Reflective Memory Transfer Sizes

Worst Case: AMD Gen2 to AMD Gen2

About 1 μs jitter regardless of transfer size and latency

Latency scales linearly with data size
Newer Gen3 Systems Reduce Latency

Times shown indicate max round trip latency
Bars indicate min-max range

Intel Latency
AMD Latency

0 1 2 3 4 5 6 7
8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1 0

0 4 8 16 32 64 128 256 512 1024 2048 4096 8192

0 1 2 3 4 5 6 7
8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1 0

However, jitter is not as consistent (but it is inconsistently better, not worse).

<table>
<thead>
<tr>
<th>Size</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.982</td>
<td>2.222</td>
</tr>
<tr>
<td>4</td>
<td>1.000</td>
<td>1.374</td>
</tr>
<tr>
<td>8</td>
<td>0.988</td>
<td>1.376</td>
</tr>
<tr>
<td>16</td>
<td>0.992</td>
<td>1.417</td>
</tr>
<tr>
<td>32</td>
<td>1.013</td>
<td>1.434</td>
</tr>
<tr>
<td>64</td>
<td>1.014</td>
<td>1.995</td>
</tr>
<tr>
<td>128</td>
<td>1.030</td>
<td>1.386</td>
</tr>
<tr>
<td>256</td>
<td>1.061</td>
<td>1.438</td>
</tr>
<tr>
<td>512</td>
<td>1.132</td>
<td>1.594</td>
</tr>
<tr>
<td>1024</td>
<td>1.266</td>
<td>1.670</td>
</tr>
<tr>
<td>2048</td>
<td>1.530</td>
<td>1.971</td>
</tr>
<tr>
<td>4096</td>
<td>2.082</td>
<td>3.109</td>
</tr>
<tr>
<td>8192</td>
<td>3.174</td>
<td>4.316</td>
</tr>
</tbody>
</table>
Summary

- Real-time control is a critical component of the scientific mission of NSTX-U
- NSTX-U requirements are increasing faster than CPU technology
- New Dolphin interconnect has proven viable for deterministic, efficient, and scalable communication
 - Scalable deployment extends component life, removes cost of wholesale replacement
 - Scalable protocol allows linear timing vs payload size
- Biggest challenge: maintaining a complete duplicate is costly but highly valuable