FLIT: Flowing Liquid metal Torus

Egemen Kolemen,
D. Majeski, R. Maingi, M. Hvasta, A. Fisher, A. Brooks, T. Kozub

Assistant Professor
Mechanical & Aerospace Engineering
Jointly appointed with the Andlinger Center for Energy and the Environment and the Princeton Plasma Physics Laboratory (PPPL)

Presented at the
IAEA Divertor Workshop
Nov, 2017
Introduction to Fast Liquid Metal Divertor
Flowing Liquid Metal Torus (FLIT) aim: understand the physics/engineering of fast flowing liquid metal (LM) systems

• Proof of principle R&D at PPPL:
 – Show the feasibility of fast, controlled flow divertor
 – Develop the engineering for fast flow system (jxB pumps, nozzles – jets/open surface, etc)
 – Optimize liquid metal divertor concept for reactors
 – Use Gallinstan (Ga, In, Sn) to simplify tests
 – No plasma in these tests

• Test axisymmetric liquid metal flows in toroidal fields in realistic B to show feasibility of fast LM divertor concept for NSTX-U at high heat fluxes

Axisymmetric free surface flow

J x B pumping to high-field side nozzle
Develop fast flowing liquid metal divertor solutions for reactors should be explored

- **Problem:** It is unclear that a solid divertor solution exists for a long pulse D-T fusion reactor. PFC high heat and neutral flux.

- **Idea:** Develop fast flow liquid Li PFCs to handle all the cooling. Solid wall behind only need to handle neutrons. Possibly remove all He (no cryopump). This would complement slow flow Li and Sn R&D.

- **Benefit:** Smaller more economic fusion reactor.

- **Issues to Address:** Previous studies showed flow instabilities: Hydraulic jump, stopping, splashing, magnetic drag etc.

- **Strategy:** Symmetric toroidal flow (avoid Ha layer), Current in LM, jxB Pump, nozzle and surface design for stability.
Heat Removal by Fast Liquid Metal (LM) Flow Divertor
Get Rid of the Divertor Material Issues

- **Moving Slab Approximation for Temperature Rise**

\[
T = 2q_{\text{wall}} \left(W / cm^2 \right) \sqrt{\frac{t}{m C_p}} = 0.92q_w \sqrt{D_{\text{exp}}/v_{\text{flow}}}
\]

- **Just flow faster to take more heat!**
- \(\Delta T \) Sn > Li (Sn lower speed requirement)
- For reactor level loads \(\sim 1-20 \) m/s
- The solid substrate behind only need to handle neutrons (no cooling system)
- Simplifies the design for compact reactor
 - Currently available steel for divertor, no water pipes, etc.
Fast LM System Acts as a Particle Pump

• Hydrogen isotope (D/T) particles are likely be trapped in the LM surface (e.g., Li) due to the high chemical solubility of hydrogen

• *Reasonable chance* of adequate He self-trapping in flowing lithium as PFC without active pumping at 10-30 m/s

• *This might reduce/avoid requirement for additional reactor cryo pumping* ➔ Smaller/cheaper reactor

KIT completes design of ITER cryo pump

“Helium is a headache for cryo pumps, as it hardly sticks to surfaces even as cold as four or five kelvin. KIT’s vacuum experts spent years looking for the most efficient carbon structure to trap helium and finally settled for coconut charcoal from a certain patch of land in Indonesia. Now KIT possesses an entire year’s harvest – enough to supply ITER and several future fusion plants.”

https://www.euro-fusion.org/newsletter/kit-completes-design-of-iter-cryo-pump/
Background to Fast Liquid Metal Divertor
TM-3 and FLiLi (EAST) Tokamak Flowing Lithium Experiments (Thin film slow free surface flow)

- **TM-3**, Russian tokamak, in 80s tested liquid metal sheet
- 10s ms ramp, 1 Tesla B (very fast) ➔ MHD drag, flow stopping/ejection
- Not representative of fusion reactor conditions (hours of rampup) ➔ Wrongly cited

- **FLiLi at EAST**: shown the engineering concept works for a slow flowing thin film Lithium system with EM pump. Exp. continuing
Fast Jet (Droplet Curtain) Divertor: ISTOK, FFH-d1 Stellarator Proposal (NIFS, Japan)

ISTOK LM Curtain: Shown feasibility of heat extraction; droplet motion due to MHD

FFHR-d1 LM Curtain (proposed J. Miyazawa, NIFS, ~LHD-U)
Tin LM due to low melting temperature, low vapor pressure
Flowing Liquid Metal R&D without Plasma

Liquid Metal Experiment (LMX) at PPPL

- **Ex**: MTOR 0.5 T, 1/R field; LMX 0.3 T
- **Aim**: Understand liquid metal flow at small scale
- Main issues with MHD flow can be addressed without need for plasma
- Developing diagnostics and control system to analyze LM flow
 - **Surface waves**: Measurement and stabilization
 - **Heat transfer**: Enhance mixing using vortex generators
 - **Holding Study jxB forces control of the LM flow

MTOR (UCLA)
Main Challenge: MHD Flow Instabilities

Solutions:

- $j \times B$ force can be used to reduce these effects (stop hydraulic jump)
- Axisymmetric annular (as opposed to channel) flow ➔ No Hartman current, MHD drag for flow along flux surface (Morley FED 2002)
- Reduce flow speed requirement by increasing advection
Introduction/Orientation:
fast free surface LM flow in a channel (LMX)
MHD Stability Analysis: Rayleigh–Taylor

- Jaworski studied the stability of liquid metal in magnetic fields.

\[\nabla \cdot \vec{u} = 0 \]
\[\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} \right) = \rho \ddot{X} - \nabla p + \vec{J} \times \vec{B} + \mu_f \nabla^2 \vec{u}, \]

- Linear modes grow as

\[\exp(ik_x x + ik_y y + nt) \quad k_{cr} = \sqrt{\frac{jB - \rho g}{\Sigma}} \]

- Stable if total \(jxB > \) surface tension

- \(J \), the total current including, self induced + ELMs + Applied

- If \(J_{applied} > J_{ELM} + \ldots \) we get stable flow

- With applied \(J_{pol} \) theoretically LM should be stable
Current Fast Liquid Metal Divertor Experiments at PPPL
Flowing liquid metal R&D presently being done in linear geometry on Liquid Metal eXperiment (LMX)

Liquid Metal Experiment (LMX) operating at PPPL (Kolemen Group)

Aim: Understand liquid metal flow at small scale

Developing diagnostics and control system to analyze LM flow
 - Surface waves: Measurement and stabilization
 - Heat transfer: Enhance mixing using vortex generators
 - Holding Study $j \times B$ forces control of the LM flow

Diagnostics and studies move to FLIT

LMX publications by Kolemen group:
Kosumi, FEDC 111 (2016) 1193
Hvasta, RSI 88 (2017) 013501
Hvasta, Nucl. Fusion, (2017)
Hvasta, MST, (2017)
Reduce Speed Requirements by Better Mixing: Heat transfer and flow under JxB force

Lorentz force: \(\frac{\partial \mathbf{u}}{\partial t} \propto [\mathbf{J} \times \mathbf{B}] \)

Heat transfer: \(\frac{\partial T}{\partial t} \propto \mathbf{u} \cdot \nabla T \)

Experimental setup: \(J_x \cdot B_y \rightarrow F_z \)

\(F_z < 0 \)

Enhance heat transfer
+ Push LM to the wall

Use electric current and magnetic field to control LM flow and heat flux

Heat flux ratio (top/bottom) vs. Current (A)

Modestov, Nucl. Fusion, 2017
Simulations: Heat transfer and flow under $J \times B$ force
(M. Modestov)

FIG. 6: Temperature field at the bottom for two directions of the $J \times B$ force.

Side view

Modestov, Nucl. Fusion, 2017
Current in LM can enhance the heat transport

- jxB causes mixing in flow, improving heat flux to the bottom and sides of the channel. (A. Fisher and J Hinojosa). Thus, reducing the LM speed requirement for reactor.

Thermal Camera on top of the flow
jxB Control: Liquid metal velocity and height (M. Hvasta and A. Fisher)

- **jxB affect model for bulk flow:**
 - Mass conservation
 \[v_0 h_0 = v_1 h_1 = q \]
 - Momentum conservation
 \[
 \rho v_0^2 h_0 + \frac{\rho g h_0^2}{2} = \rho v_1^2 h_1 + \frac{\rho g h_1^2}{2} + \frac{jB h_1^2}{2}
 \]

- **Proof of principle:** We can get \(\gg g \) in a reactor

- **Increase velocity, reduce height**
jxB Control: Move the hydraulic jump (A. Fisher and M. Hvasta)

- Increase the downward jxB to move the hydraulic jump downstream (max 100 amps)

Jump positions vs. jxB directed downwards

- 5.9e-2 Tesla
- Linear fit
- 7.8e-2 Tesla
- Linear fit
- 9.9e-2 Tesla
- Linear fit

Move the jump downstream and out of the divertor area
FLIT: Flowing Liquid Torus
Purpose of FLIT: Develop Fast Flow Liquid Metal Divertor for Fusion

- **Study the fast flow LM divertor - No Plasma (Galinstan):**
 - Prove the $j \times B$ pump for LM pumping in a tokamak
 - Prove annular flow under high B
 - Control of flow sticking to the wall (probably using J current)
 - Avoid MHD and fluid related flow issues
 - Enhance heat flux via advection
 - Study the heat flux carrying capability (using e-beam or non-plasma source)
 - Study the B perturbations (poloidal, copper plasma etc…)
 - Compare different nozzles open surface vs jets/sprays
FLIT Aims to Study Annular Flow: More Realistic and Favorable

- Advantage over channel flow
 1. No side wall, no Ha layer
 2. As long as flow along field lines [Morley FED 2002], can be used for stellarator

- Magnetic Propulsion
 - $B_t \sim 1/R$ in tokamak
 - Pressure due to variation in jxB can propel the liquid metal
 - Higher pressure on the high field side, lower on the low field side
 - Annular poloidal flow can be propelled [Zakharov PRL 2003]

- Need to test this realistic and more favorable configuration

3D MHD numerical calculations
M. Modestov (Princeton Univ.).
FLIT: Flowing Liquid Torus,
Engineering/Physics Development on a Torus LM System

- **Heat Flux Handling Capacity**: 10-20 MW/m²
 - Flow rate 1-10 m/s and LM height of ~1-20 mm (100 liters/s capacity) capable of convecting high q
 - Limited test heat input planned

- **Magnetic Field**: 1 Tesla
 - To study and prove the concept for a possible upgrade to NSTX-U with a liquid metal divertor

- **Operation Duration**: >10 seconds at full field
 - Stabilization of the flow for physics studies

- **Coil Design**: 12 Rectangular coils (detachable)
 - Set by the machine size, ease of access, specs of the available power supplies, and I²t heating limits

- **Magnet size**: 75 cm radial x 105 cm vertical
 - Space for flow path, diagnostics, jxB pumps

- **Liquid Metal**: ~30 gallons Galinstan (Ga-In-Sn)
 - Safety; Lithium building needed for Li operation

- **Pumps**: 6 jxB pumps (26 kA @ 4.38 Vdc, 1 T)
 - Based on drag calcs and available power supplies
Need Flexibility to Project Fast LM Flow to Reactor: Comparison of FLIT with ITER and NSTX-U

- FLIT will allow achieve the important non-dimensional parameters
- Compare simulations to experiments at relevant parameters
- Note: Can achieve larger range with more galinstan (e.g. Ha)
- Next test the system on a tokamak/stellarator (such as NSTX-U)
FLIT timeline:
Full FLIT Design and Simulations Have Been Completed

- *Coil Final Design Review (FDR) Approved*
- *Full System FDR in two weeks (PDR Approved)*
- *Procurement delayed*

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coils</td>
<td>Design TF Coils</td>
<td>Procure TF Coils</td>
<td>Install Coils on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stand</td>
</tr>
<tr>
<td>Coil Stand</td>
<td>Design Coil Stand</td>
<td>Fab. Stand</td>
<td></td>
</tr>
<tr>
<td>Vessel</td>
<td>Design Vessel</td>
<td>Fab./Procure Vessel</td>
<td>Install Vessel</td>
</tr>
<tr>
<td>Test Article</td>
<td>Design Test Article</td>
<td>Fab./Procure Test Article</td>
<td>Install Test Article</td>
</tr>
<tr>
<td>Pump</td>
<td>Design jxB Pump</td>
<td>Procure Power</td>
<td>Install jxB Pumps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td>LMX</td>
<td>Diagnostic Development</td>
<td></td>
<td>Install Diagnostics</td>
</tr>
<tr>
<td>Galinstan</td>
<td></td>
<td>Procure Galinstan</td>
<td></td>
</tr>
</tbody>
</table>

System Startup

- Test Article: Design Test Article
- Coils: Install Coils on Stand
- Vessel: Install Vessel
Full Copper FLIT Optimized for Maximum Space, Cooling and Simple Operations

ANSYS Model – 12 Fold Cyclic Symmetry

Cooling Tubes
FLIT will have max 2.3 T (1 T in the center)

• Rounded edges (2nd design) optimized for magnetic forces
Stresses (TF Inner Legs Bucked): EM + Thermal

Copper Max Tresca Stress 27.5 MPa

vs 56 Static Allowable

Peak strain .03%

Insulation Max Shear Stress 4.4 MPa

vs 26.7 allow

Insulation Max Tresca Stress 13.7 MPa

Vs 26.7 allow
Coil Supports & Stand (1/3)

80/20 Quad-Strut
(T-slotted Al Framing & Fittings)
Coil Supports & Stand (2/3)

(Outside View)
Coil Supports & Stand (3/3)

(Top View)
Roller Bearings

RoundWay® Roller Bearings (RW 24 S)
Dynamic Load Capacity = 6020 [lbf]

Total Experimental ~ 12,000 [lbf]
Vessel Design

- Vessel does not necessarily need to hold vacuum or contain high pressure
 - Hold argon pressure
 - Minimal argon purge

- 2-Part Construction
 - “C”-shaped to fit within 180° coil

- Removable vessel

- Large ports for height & flow diagnostics
Vessel Design

10 Full-Access Ports

Cross-Section of Vessel in Coil
Test Article Optimized

- Been through various designs
- Updated to simple low-cost article
- Portions of outer annuls removed to limit galinstan inventory

Lead Time:
3-weeks for drawings
12-weeks for fabrication

Cost:
Vendors provided similar pricing
Estimates were within anticipated range
Test Article Modifications Allow for Radial jxB Electrodes

- Cross-section showing 6 axisymmetric pumps.
- JxB pumps have no moving parts/seals
- Each pump requires ~ 20 [kA] @ 4 [VDC] for 1500 [gpm]
- Utilizes toroidal field (B ~ 1 [T])
- Compact design reduces cost
Conclusion and Future Perspective

- FLIT designed and reviewed at PPPL
- LMX is studying the LM flow in a channel flow
- FLIT, initially test open surface flow at up to 10 m/s
- Then, we will compare different nozzles: Jet-Droplet forming nozzles may have advantage
- Later phase to add heat and plasma source (e.g. plasma gun)
- Upgrade for Lithium operation in considered
Control of Hydraulic Jump Location with jxB

• Hydraulic Jump instability can be avoided with jxB
• Experimental setup shown