Fatigue and fracture analysis on divertor monoblock heat sink at H-mode operation with Type I ELMs

Peng Liu1, Xinyuan Qian1, Xin Mao1, Xuebing Peng1, Shijian Qin2, Jianwu Zhang1, Yuntao Song1,2

1Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui, China
2School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
E-mail: liupeng@ipp.ac.cn

1. Introduction
The most advanced and mature plasma facing unit (PFU) technology is the ITER W/Cu PFU, which is a monoblock structure composed of tungsten, copper and CuCrZr as plasma facing material, interlayer and heat sink, respectively. EAST divertor PFU was introduced for thermal-mechanical analysis with simplified Type I ELMs. EAST H-mode heat flux in H-mode (High confinement mode) operating condition. Fatigue failure in CuCrZr heat sink tube including fracture was presented.

2. Monoblock model for analysis
Geometry and material parameters
The monoblock of EAST W/Cu divertor without twisted tape is consist of W, Cu and CuCrZr as armour, interlayer and heat sink, respectively. The temperature-dependent physical properties are taken from ITER-SDC. Assume W as elastic material, Cu and CuCrZr as elasto-plastic material use Chaboche model.

3. H-mode operation with Type I ELMs
Equivalent heat flux
Assumption and simplification made to describe time evolution of heat flux of ELMy H-mode on divertor PFU. Here, we count the equivalent heat flux as the input heat load.

4. Fatigue analysis
Thermal- mechanical analysis
The temperature response of heat sink tube to ELMy is shown in Section 3 which indicates that the transient wave of ELMs have little impact on the tube temperature. We study the equivalent heat flux as the input heat load. Fatigue analysis:

- Thermal- mechanical analysis
- Fatigue damage:
- Fatigue life
- Cumulative damage

5. Fracture analysis
(I) The maximum total strain and stress all appeared in the upper inner wall region of tube in FE model.

- Fatigue damage:
- Fatigue life
- Cumulative damage

6. Conclusions and discussions
The ELMs make a significant influence on the temperature peak of equilibrium and equivalent heat flux is obtained for steady-state analysis. Fatigue analysis:

- Upper inner wall region of tube takes risk to fatigue failure. The elasto-plastic CuCrZr material model was used for ETA, total strain range combined with strain-life curve was presented to estimate the fatigue life which illustrate the cycle number.

- Palmgren-Miner theory is a linear fatigue damage cumulative rule: $D = \sum \frac{N_i}{N_j}$ where N_j is given cyclic strain range.

- The threshold value of fatigue damage set as $D=1$.