Active suppression of tungsten impurity influx using lithium aerosol injection in EAST

1. Introduction

Tungsten is considered a PFM divertor materials in ITER, but encountering with some serious problems:

- Serious power radiation loss induced by high-Z impurity;
- Lower tolerance in plasma core, 10%;
- MHD instability induced by high-Z impurity accumulation;

EAST device introduction:

- Plasma facing area 6m²
- IETR-like upper tungsten divertor
- Steady-state, H-mode, high parameters operation with increased heating power in near future.

Tungsten impurity accumulation core deteriorates plasma performance:

- Hollow Te profile and MHD mode locking
- Result in plasma disruption

Controlling tungsten impurity is important key to obtain high confinement plasma.

2. Lithium aerosol dropper

The active coating system using Li aerosol dropper on EAST:

- Li aerosol diameter 45µm, 99.9% Li;
- Li injection rate among 10-100µs, injection velocity 10m/s;
- Located directly above upper X-point, real-time injection;

3. Li aerosol injection before Li coating

- Light emission appears predominantly yellow, which is much different with previous green color;
- Li is hard to thoroughly ionized due to poor plasma performance;
- No obvious tungsten impurity suppression observed

4. Lithium aerosol injection after Li coating

- LAIs in H-mode discharges after Li coating:
 - Strong Li ions formed in SDL region;
 - Real-time suppress W impurity;
 - Decrease recycling;
 - Increase stored energy;
 - Improve plasma confinement;
 - Prognostically decreased W source and W concentration in plasma core with sequential LAIs.

5. Possible mechanism for W impurity suppression by lithium aerosol injection

Four kinds of W mitigation mechanism model:

- (a) bare W surface subjected to D ion impingement;
- (b) bare W surface with an incomplete layer of injected Li ions, which could provide a transient suppression;
- (c) W surface coating with a thick Li film provide a more robust defense against W sputtering, but the effects would be weaken after a few tens of discharges;
- (d) W surface with more complete protection offered by an complete Li ions layer on exiting thick Li film, which mitigates degrade Li coating one side and shield W surface with uniform Li ions;

Summary:

A systematic study of the effectiveness of real-time LAI in suppressing W influx from the EAST upper W divertor has been accomplished.

Lithium aerosol injection has been successfully used to mitigate W influx from plasma impingement, but the accumulated Li could cause a serious and transient deflagration in the SOL region.

Lithium aerosol injection could effectively suppress W impurity concentration, but the effects typically last for 40-100 discharges.

6. Summary

Effectively reduce the heat flux on target, reduced the ion saturation current density at divertor target, reduced the ion saturation current per unit area;

- The divertor electron temperature decrease from 40eV to 10eV;
- Effectively reduce the heat flux on target;
- The IR-measured strike-point temperature decrease sharply from 400°C to 220°C;

Acknowledgments

This research is partially funded by the National Key Research and Development Program of China under contract 2017YFA0402500, National Natural Science Foundation of China under Contract No. 11522248, 11375263, 11722291, and National Magnetic confinement Fusion Science Program under Contract No. 2013GB114004. This work was also partially supported by the Japan Society for the Promotion of Science, National Research Foundation of Korea, National Research Foundation of Korea, National Science Foundation of China (61575073) and Foreign Program in the field of Plasma Science Program under Contract No. 11254141XD.