Quantitative evaluation of the wall heat load by lost fast ions in the Large Helical Device

J. Morimoto, R. Seki, Y. Suzuki
1SOKENDAI (The Graduate University for Advanced Studies)
2National Institute for Fusion Science

Background
1. Heat load by lost fast ions is critical issue for fusion reactors.
 - Damage the device
 - Limit operational conditions.

 ➔ Prediction and evaluation of heat load by lost fast ions is required to design fusion reactors by means of orbit following simulation.

2. Magnetic field structure changes with plasma beta.
 ➔ The effect of plasma beta should be included to evaluate heat load.

Purpose of Research
- Development of a simulation code to evaluate heat load by lost fast ions.
 (Including 3D magnetic configuration and the effect of plasma beta.)
- Validation of the simulation code with experimental results. (Future)
- Investigation of the effect of plasma beta on fast ion loss and heat load.

The Large Helical Device
- Superconducting Heliotron device in Toki, Gifu, Japan
- L=2/M=10 Heliotron configuration.
- Maximum magnetic field: 2.75 T
- Reactor relevant high beta plasma (<β=5%) is achieved.
- Design activity of LHD type reactor (FFHR) has been conducted.

Results and discussion
- Heat load concentration on vacuum vessel
 - Vacuum: Shift from footprints (-)
 - Finite Beta: Inside to upper region. Shift from footprints (+)

Calculation Method
- Guiding Center orbit following in real coordinate (GCR code)
- Heat load evaluation.
 ➔ Calculation of lost point and energy by orbit following
 ➔ Weighing
 ➔ Number of generated in real device
 ➔ Number of followed particles
 ➔ Calculation of lost power on the polygon.
 ➔ Calculation of heat load on each polygon.

 ➔ Characteristic of the code.
 ➔ High beta equilibrium field by HINT.
 ➔ Orbit following until vacuum vessel.
 ➔ Lost point detection.
 ➔ Velocity change by Coulomb collision.

Calculation Conditions
- To consider the geometry of injector and distribution of fast ions, FIT3D code is used.

Fast ion loss
- Co-injection
- Counter-injection

Heat load
- Co-injection
- Counter-injection

Conclusion
- Heat load distribution is affected by plasma beta
 - Counter, Vacuum: Torus inside to upper region
 - Counter, Finite Beta: Torus inside to lower region

- Because of the drift, fast ion loss is shifted from thick footprints of magnetic field lines.
 - Quantitatively more reliable data is required.