Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics

A. Wojeński¹
K. Pozniak¹, D. Mazon², M. Chernyshova³

¹Warsaw University of Technology, Poland, ²CEA-IRFM, France, ³IPPLM Poland
Target application

WEST tokamak, CEA, France

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
SXR plasma tomography

Assembled T-GEM detector with analog front end for JET plasma diagnostics

SXR plasma tomography camera placement at WEST tokamak

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Soft X-ray measurement system

Remote power control and network switch
High voltage power supply unit
Multichannel modular measurement system
Custom water cooling system
New version of GEM detector

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Simplified data network

- **Parameters control**
- **Tokamak** → **SXRx** → **GEM detector** → **Raw data** → **SXRx measurement system** → **Fast feedback network** → **Control room**

Feedback based control:
- **SXR measurement system**
- **10 ms**
- **FPGA preprocessing**
- **PC postprocessing**

Offline database:
- **Slow network**

- **PCs**

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics“ 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Data Quality Monitoring

- Reliable data for feedback tokamak control
 - For 1ms histogram min. 1000 events can be expected
 - Malformed data, significant error can occur in:
 - Histogram plots
 - Feedback loop (control systems)

- Data for post-measurement analysis
 - Development of new algorithms
 - Exploring the GEM detector and tokamak environment
 - Discovery of new type of signals – possible only when working in tokamak environment in real-time

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics“ 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Data Quality Monitoring

- Works on raw data from GEM detector
- Registers data on all available channels (e.g. 128)
- High statistics event acquisition (up to 100k events)
- Real-time signal analysis
- Functional blocks easy to add – modular implementation
- Much more faster than offline analysis (data quality markers)
- Absolute timestamps – correlation with GEM measurement system and external systems working at WEST

Complex offline algorithm verification:
- Diagnostic data
- Correct measurement data
- Mixed – diagnostic data with correct measurement data
Typical SXR event from GEM

Nonstandard signals – CELIA experiment
System response for high rate radiation

LASER: 40 mJ 1000 shots
GEM HV = [900, 357, 700, 362, 700, 367, 1500] V

<table>
<thead>
<tr>
<th>Target</th>
<th>counts</th>
<th>events</th>
<th>samples</th>
<th>Lost %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>21186</td>
<td>17989</td>
<td>27233</td>
<td>11.9</td>
</tr>
<tr>
<td>W</td>
<td>25599</td>
<td>21402</td>
<td>34308</td>
<td>16.0</td>
</tr>
<tr>
<td>Fe</td>
<td>27390</td>
<td>25744</td>
<td>56049</td>
<td>45.0</td>
</tr>
<tr>
<td>Cu</td>
<td>36672</td>
<td>28952</td>
<td>55624</td>
<td>25.8</td>
</tr>
<tr>
<td>Ti</td>
<td>26974</td>
<td>36049</td>
<td>101598</td>
<td>70.5</td>
</tr>
</tbody>
</table>
FPGA standard firmware implementation

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics“ 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Extended implementation with Data Quality Monitoring

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Channels saturation

- Single or neighbor channels affection
- Correlation between channels

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics“ 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Multievent signals

- Algorithm verification (high statistics)
- Algorithm development

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Geometrical signal overlap

- Algorithm for proper cluster detection
- Extraction of the events (e.g. peak signal channel identification)
- Channel range for a cluster
Multiframe events

- How often does they occur – system bandwidth influence
- When can occur - correlation with other measurement systems

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics“ 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Offsets tracing

- Snapshot of all channels
- Fluctuation of offsets
- Information of input dynamic range variation for each channel
- Can be correlated with saturation information
Data rate registration with reference signals

- Event rate on each channel
- Fixed period of time (e.g. 10ms)
- Can be used to compare with postprocessed data (algorithms rejections etc.)
- Can be combined with information about rejected events due to buffers overflow

- Reference signal as second stage of verification – made in software

- Hints for next generation system construction:
 - Hardware optimization
 - Use of data transmission links

A. Wojenski et al. "Advanced real-time data quality monitoring concept for GEM detector based SXR plasma diagnostics" 2nd IAEA Technical Meeting FDPVA 2017, 30.05-2.06.2017, Boston, USA
Summary

- DQM as important part of systems working in a feedback loop
- Exploring systems in a real environment
- Algorithm development with test data sets
- Improves measurement quality
- Additional verification of measurement data (qualified data only)
- Design optimization:
 - Algorithms
 - Firmware
 - Hardware construction
Acknowledgement

The work has been carried out under the doctoral scholarship program from Polish National Science Centre, number 2016/20/T/ST7/00203.
Thank you for attention

A.Wojenski@elka.pw.edu.pl