Machine Learning of Noise for LHD Thomson Scattering System

Keisuke Fujii, Kyoto univ.
LHD Thomson scattering data

Large helical device plasma

LHD-Thomson scattering system

(a)

Characteristics

High spatial resolution: ~2cm, ~100 points.

Steadily operated: measures almost all the LHD experiment.
LHD Thomson scattering data

Characteristics

High spatial resolution: ~2cm, ~100 points.

Steadily operated:
measures almost all the LHD experiment.

What is required for the data analysis

Inference of the smooth latent function
from the discrete measurement.
Random noise on LHD Thomson scattering data

Uniform Gaussian noise is not appropriate.

Noise scale have a dependence on latent T_e or N_e values.
(Diagnostic systems have a sweet spot.)
There is systematic noise due to calibration error. (Some channels show always larger values than the vicinity.)
Objectives

Random noise

Systematic noise

Latent functions

Estimate

- Random noise
- Systematic noise
- Latent functions

from vast amount of data.
Physics-driven or Data-driven?

Physics-driven noise model

1. List all the possible noise sources
2. Model its distributions
3. Propagate to the signal and marginalize (integrate) them

\[
A = \bar{A} \pm \Delta A \\
B = \bar{B} \pm \Delta B
\]

\[
\Delta \left(\frac{A}{B} \right) \approx \left| \frac{1}{\bar{B}} \right| \Delta A + \left| \frac{\bar{A}}{\bar{B}^2} \right| \Delta B
\]

Does not work if there is

- Unknown noise sources
- Mis-modeling of the noise property
Physics-driven or Data-driven?

Physics-driven noise model

List all the possible noise sources

Model its distributions

Propagate to the signal and marginalize (integrate) them

Does not work if there is

Unknown noise sources

Mis-modeling of the noise property

Uncertainty propagation usually underestimates the noise amplitude.

Uncertainty by the diagnostic team cannot be trusted!
Physics-driven or Data-driven?

Physics-driven noise model

- List all the possible noise sources
- Model its distributions
- Propagate to the signal and marginalize (integrate) them

Does not work if there is
- Unknown noise sources
- Mis-modeling of the noise property

Data-driven noise model

- Directly build a noise model without considering physics
- Estimate these parameters from (a huge) data

Free from unknown noise sources.

Uncertainty propagation usually underestimates the noise amplitude.
Bayesian inference for big data

Systematic noise
\(10^2 \times 1\)

Latent functions
\(\sim 10^2 \times 10^5\)

Hyper parameters

Data
\(\sim 10^2 \times 10^5\)

\[p(f, \delta_y | y, \theta) = \frac{p(y|f, \delta_y, \sigma)p(f|\theta)p(\delta_y|\theta)}{p(y|\theta)} \]

Data:
Thomson scattering data \(T_e\) and \(N_e\) for LHD experiment in 2013.

Size: \(\sim 300,000\) sets of data
1 set: \(~100\) radial positions \(\times\) 2 kinds of values

Total size: \(> 10^7\) points.
Outlines

- Introduction
- Model
- Inference
- Result
- Future perspective
Model: likelihood

Random noise

Systematic noise

Latent functions

Noise scale

T_e, N_e

Signal

$f \exp(\delta_y)$

f

T_e, N_e

$p(y|f, \delta_y, \sigma) p(f|\theta) p(\delta_y|\theta)$

$p(y|\theta)$

$p(y|f) = \mathcal{St}(y|f \exp(\delta_y), \sigma_y(f), \nu)$

Student’s t-distribution

True value

Shift by systematic noise
Model: prior for the calibration error δ_y

$$p(\delta_y) = St(\delta_y | 0, \sigma_{\delta_y}, \nu)$$

Calibration error may distribute around 0 scale $\sigma_{\delta_y} \in \theta$
Model: noise scale model

\[p(y|f) = St(y|f \exp(\delta y), \sigma_y(f), \nu) \]

The noise scale dependence is approximated by N.N. (Densely connected layer)
Model: latent function model

Appropriate prior is not clear. We decided to determine the shape of prior from the data.

We adopted "low dimensional assumption" for the latent functions f.

f (≈200 points for 1 data) is described by a few parameters z ($n_z = 5$).

Prior:

$$z \sim p(z) = N(z \mid 0, I)$$
Outlines

- Introduction
- Model
- Inference
- Result
- Future perspective
Optimization

The integral is intractable and the integrand is super-high dimensional.

Variational Bayesian inference

\[p(f, \delta_y | y, \theta) = \frac{p(y|f, \delta_y, \sigma)p(f|\theta)p(\delta_y|\theta)}{p(y|\theta)} \]

We need to maximize

\[p(y|\theta) = \int p(y|z, \delta_y, \theta)p(z|\theta)p(\delta_y|\theta)dzd\delta_y \]

over \(\theta \) [10^2 x 10^5]

Latent parameters [10^2]

Correction factors [5 x 10^5]
Variational approximation

True posterior

\[p(z, \delta_y | y, \theta) \approx \prod_i q(z_i | y_i) q(\delta_y) \]

Variational posterior (factorized)

\[q(z_i | y_i) = N(z_i | \mu_i, \sigma_i) \]
\[q(\delta_y) = N(\delta_y | \mu_\delta, \sigma_\delta) \]

Optimization target: Evidence Lower Bound (ELBO)

\[\log p(y | \theta) > \sum_i \int q(z_i | y_i) \log p(y_i | z_i, \theta) dz_i - KL[q(z_i | y_i) || p(z_i | \theta)] \]
Neural network approximation

Task is now simplified; we only need to know μ_z, σ_z for each y_i and $\mu_\delta, \sigma_\delta$ common for all the data.

This part is still computationally expensive because a large number of experimental data.

\[
q(z|y) = N(z|\mu_Z, \sigma_Z)
\]

Instead of evaluating μ_z, σ_z for all data separately, we constructed N.N. to directly estimate μ_z, σ_z from y_i.
Full network structure

(a)

\[q(z|y) = N(z|\mu_z, \sigma_z) \]

Estimate \(\mu_z, \sigma_z \) from \(y \)

(b)

\[p(y|z) = St(y|\mu_y, \sigma_y) \]

Estimate \(\mu_y, \sigma_y \) from \(z \) and \(R \)

Inference network.

Prediction network.
Outlines

- Introduction
- Model
- Inference
- Result
- Future perspective
Noise scale dependence

\[p(y|f) = St(y|f \exp(\delta y), \sigma_y(f), \nu) \]

- Large noise
- Small noise

S/N ratio get worse in lower \(N_e \) side
S/N ratio get worse in very low and high \(T_e \) region

Sweet spot

S/N ratio get worse in lower \(N_e \) side
Systematic noise

Inferred calibration correction factors

Now we have a correction factor of mis-calibration.

The original data can be Post-calibrated by this values.
Summary

We estimated
- Random noise
- Systematic noise
- Latent functions

based on the neural network variational Bayes method.

With the estimated noise properties, more accurate regression becomes available.
Outlines

- Introduction
- Model
- Inference
- Result
- Future perspective
Coordinate mapping

\[p(y|z) = St(y|\mu_y, \sigma_y) \]

This network can be extended to include other physical constraints.

e.g. \(N_e \) and \(T_e \) should be a function of magnetic flux surface.
Laplace- and variational (KL[q||p]) approximation

Laplace KL[q||p]

approximation

True posterior

http://prog3.com/sbdm/blog/nietzsche2015/article/details/43450853
\[p(f) = \int p(f|y)p(y)dy \approx \frac{1}{N} \sum_{i}^{N} p(f_i|y_i) \]

Sample from data distribution \(p(y) \)

Unbiased

Biased

prior

posterior