Close to zero Permeation in Diffusion Barrier Nanoceramic Coatings

M. Vanazzi, D. Iadicicco, F. Garcia. Ferré, F. Di Fonzo
Acknowledgements & ongoing collaborations

Corrosion tests + financial support
Serena Bassini
Marco Utili
Mariano Tarantino
Pietro Agostini

heavy ion irradiations
Patrick Trocellier
Yves Serruys
Lucile Beck
Cédric Baumier
Odile Kaitasov

TEM + XRD
Alexander Mairov
Kumar Sridharan

Brillouin spectroscopy
Marco G. Beghi

Nanoindentation + nanoimpact
Luca Ceseracciu
Introduction
Future generation nuclear systems (GIV)

Major bottlenecks for all systems

NEED FOR COATINGS

Tritium management

Corrosion

Radiation damage

J.L. Straalsund – Westinghouse Hanford

S.J. Zinkle and G.S. Was – Acta Materialia - 2013
Future generation nuclear systems aim at:
- Increase efficiency
- Reduce waste generation
- Enhance safety
- Promote non-proliferation

Ultimate goal for LFRs:
- 800 °C
- 150 dpa

Advantages:
- Safety
- Transmutation of minor actinides / fuel breeding

Major issues:
- Corrosion
- Radiation damage
Ni leaching in austenitics (23000 h @ 550°C, 10^{-6} wt.% O)

In-situ passivation is not viable for T > 500°C-550°C

(will be exceeded by fuel cladding)

C. Schroer et al. - Corros. Sci. - 2014

Solubility of Ni in lead is very high
Heavy liquid metal corrosion

Austenitic steels exposed to HLM for 3000 hours at 550°C

V. Gorynin et al. – Metal Science and Heat Treatment - 1999

In-situ passivation is not viable for T > 500°C

(will be exceeded by fuel cladding)
Technology Constraints for ALFRED

Temperature

650
600
550
500
450
400
350
327

V

480

Vessel

400

Internals

400

Cladding

Negligible

few

~ 100

Material embrittlement

Technology gap

Critical Parameter

Technological Limits

O₂ control + aluminization

O₂ control

Low [O] activity

Lead Freezing

Material embrittlement

T, dpa

~ 550

Pumps outlet Core inlet

IAEA Workshop 05-07/07/2017

fabio.difonzo@iit.it
DEMO Reactor - Breeding Blanket

- **Eutectic Pb-Li in Breeding Blanket**
 - First wall coolant
 - Neutron moderator/multiplier
 - Tritium breeder through nuclear transmutations on Lithium

Stability of oxides

![Graph showing stability of oxides](image)

- Fe_3O_4
- Cr_2O_3
- O in Pb-15.7Li
- Al_2O_3
- Li_2O

Temperature [°C]

![Section of the Breeding Blanket component](image)
Oxygen Control, fighting with ever narrow operational window!
NANOCERAMICS

Mechanical performance
- Coble creep, twinning, etc.

Corrosion resistance
- Interstitial emission from GBs
 - F. Garcia Ferré et al. – CORROS SCI – 2013

Radiation tolerance
- X.M. Bai et al. – Science - 2010
Aluminium Oxides - Al$_2$O$_3$ films deposited by Pulsed Laser Deposition (PLD)

Acta Materialia 61 (7), 2662-2670, 2013
Corrosion Science 77, 375-378, 2013
Scientific Reports 6, 33478, 2016
Corrosion Science on line, 2017
PLD-grown Al₂O₃ nanoceramic coatings

- high quality coatings
- custom process: bottom-up approach
- process at room temperature
- amorphous films with nanodispersed crystalline domains

<table>
<thead>
<tr>
<th>Property @RT</th>
<th>Sapphire</th>
<th>PLD Al₂O₃</th>
<th>AISI 316L</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>0,24</td>
<td>0,295 ± 0,025</td>
<td>0,3</td>
</tr>
<tr>
<td>E [GPa]</td>
<td>345</td>
<td>193,8 ± 9,9</td>
<td>200</td>
</tr>
<tr>
<td>G [GPa]</td>
<td>175</td>
<td>75,5 ± 3,8</td>
<td>80</td>
</tr>
<tr>
<td>B [GPa]</td>
<td>240</td>
<td>159,2 ± 11,8</td>
<td>140</td>
</tr>
<tr>
<td>H [GPa]</td>
<td>27,8</td>
<td>10,3 ± 1</td>
<td>4</td>
</tr>
<tr>
<td>H/E</td>
<td>0,059</td>
<td>0,049 ± 0,007</td>
<td>0,025</td>
</tr>
</tbody>
</table>

H/E parameter index of wear resistance and fracture toughness
Mechanical behaviour of PLD-grown Al₂O₃

- **Nanoindentation Tests**

 ![Nanoindentation image](image)

 F. Garcia Ferré et al. – ACTA MATER – 2013

 - **Metal-like behavior under plastic strain**

- **Nanoscratch Tests**

 ![Nanoscratch image](image)

 - **Strong interfacial bonding**
Burst test

BEFORE

AFTER

longitudinal cracks

cross shaped cracks

pile-up
STM reveals homogeneous dispersion of Al$_2$O$_3$ nanoparticles (2-5 nm) in amorphous Al$_2$O$_3$ matrix.

Amorphous matrix as “lubricant”
Thermal stability

Thermal stability: in-situ TEM

as-deposited

600°C – 30 min

700°C – 22 min

800°C – 25 min

BF-HRTEM

as-deposited

800°C – 25 min

IAEA Workshop 05-07/07/2017

fabio.difonzo@iit.it
H$_2$/D$_2$ permeation tests on Al$_2$O$_3$ films
O₂ permeation barrier

316L steel annealed at 500°C for 2 hrs

316L steel annealed at 1000°C for 2 hrs

316L plate

annealed 2h @ 1000°C in air

coating

oxide scale

coated steel 100 µm
Gas Permeation in solid matter follows the 1° Fick Law

\[J(t) = \frac{D \cdot K_s \cdot p^2}{d} \left[1 + 2 \sum_{n=1}^{\infty} (-1)^n \exp \left[-D \frac{n^2 \pi^2}{d^2} t \right] \right] \]

\[J = \text{permeating gas flux} \]

\[J = \frac{DK_s}{d} \left(p_h^{1/2} - p_i^{1/2} \right) \rightarrow J = \frac{P}{d} \cdot p^{1/2} \]

\(P = \text{permeability} \) (permeation coefficient)
High P Section
The section is firstly evacuated and then filled with pure H$_2$ at different pressures (from 10^3 to 10^4 Pa)

Meddle Section
A circular sample (usually a steel disk) divides high P and low P sections. The sample is heated from room temperature to 750 °C

Low P section
Pumps system keeps pressure constantly in the range of 10^{-5} Pa. A mass quadrupole reads ion current due to permeation of H$_2$
Permeation Reduction Factor (PRF)

... from the Ion Current measurements ...

![Graph showing Ion Current measurements with different barrier thicknesses.]

... to Permeation Reduction Factor ...

PRF increases with the barrier thickness (i.e. the length of the diffusion path) from ≈ 800 up to $100,000$ @ 650 °C

The growth is typically exponential due to the combination of permeative phenomena
Permeation tests: different film morphologies

... changing the background pressure during depositions (i.e. films morphology) ...
Permeation tests: different film morphologies

Changes in film porosity and compactness
Permeation tests: thermal stability

Thermal cycling in order to investigate **barrier stability** and **degradative phenomena**

(50 cycles from 250 to 550 °C)

\[\text{PRF} \]

Coatings stability assured (no delamination at the interface nor cracks)

\[\text{AS DEPOSITED} \]

\[\text{ANNEALED} \]

\[\text{Low decrease in PRFs probably due to substrates degradation (i.e. thermal annealing)} \]
Coated Eurofer97 discs

100nm

250nm

1µm

3µm

5µm
50 cycles from 250°C to 550°C up to 4°C min⁻¹ in fluxed Ar 6.0 and 2hr of dwelling time.
The Activation Energy can be calculated by means of an Arrhenius plot. It is referred to a single bulk material or a tandem system substrate/coating.

\[P = P_0 \exp\left(-\frac{E_p}{RT} \right) \]

<table>
<thead>
<tr>
<th>Material</th>
<th>Activation Energy [kJ/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare steel</td>
<td>11.41</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5 µm Al₂O₃</td>
<td>56.59</td>
</tr>
</tbody>
</table>

Thin Al₂O₃ films (few hundreds of nm) increase the permeation activation energy 5 times.
Experimental set-up @CIEMAT facilities: RIPER

The diffusion chamber is connected to the beam line of a 2 MeV Van der Graaff electron accelerator (dose rate ≈ 10^2 Gy/s)

- Low pressure section
- Sample holder
- High pressure section
- Accelerator beam line
Permeation tests: coatings under irradiation

- Permeation tests with Deuterium @ 450 °C for 7 days (one cycle per day)
- **Samples irradiated** with 1,8 MeV electrons

> PRF values confirmed (around 10^3 @ 450 °C): **no significant degradation under irradiation**

> Absorption/desorption phenomena during heating/cooling ramps
Permeation tests: coatings under irradiation

- Permeation tests with Deuterium @ 450 °C for 7 days (one cycle per day)
 - Samples irradiated with 1,8 MeV electrons

\[
\begin{align*}
\text{Permeation tests with } & \text{Deuterium @ 450 °C for 7 days (one cycle per day)} \\
\text{Samples irradiated with } & 1,8 \text{ MeV electrons}
\end{align*}
\]

\[\text{Deuterium release rate (mbarl/s)}\]

\[\frac{1000}{T} (\text{K})\]

- No significant degradation even after seven days of irradiation
- Desorption phenomena increase in time due to Deuterium accumulation in the samples
Permeation tests: coatings under irradiation

- Permeation tests with **Deuterium @ 450 °C** for 7 days (one cycle per day)
 - Samples irradiated with 1,8 MeV electrons

![Graph showing Deuterium release rate vs. temperature and time.](image)

⇒ Deuterium release slightly decreases during irradiation (investigations still undergo)
Pb compatibility of Al$_2$O$_3$ barrier coatings
Corrosion resistance, O_2 saturation

SS plates

uncoated sample

heavy liquid metal corrosion

coated sample

protection

Oxidizing stagnant Pb test

F. Garcia Ferré et al. – CORROS SCI – 2013
1515Ti cylinder – 5000 h in stagnant Pb @550°C 10^{-8} \text{wt.}\% \text{oxygen}

1 \mu m \text{Al}_2\text{O}_3 \text{coating}

No solidified lead on the 1515Ti cylinder
NO CORROSION
Corrosion resistance, O_2 depletion

BEFORE

- 1515Ti
- Pb
- Al_2O_3
- resin

AFTER

- 1515Ti
- Pb
- Al_2O_3

NO corrosion

$100 \mu m$

$15 \mu m$

$2 \mu m$
Corrosion tests in static Pb-16Li

- Preliminary tests on EUROFER 97 SS substrates Al_2O_3 - coated samples
 - 1,000 hours exposure test @ 550 °C in static Pb-16Li

![Al$_2$O$_3$ - COATED sample](image1)

![UNPROTECTED sample](image2)

![UNPROTECTED sample](image3)
Corrosion tests in static Pb-16Li

- Preliminary tests on EUROFER 97 SS substrates Al_2O_3 - coated samples
 - 1,000 hours exposure test @ 550 °C in static Pb-16Li
Recent studies have shown the formation of a potential protective layer of LiAlO$_2$ in Pb-Li eutectics at high temperatures (above 500 °C)

- Stable LiAlO$_2$ ternary compound in similar conditions to the ones of DEMO
Heavy Ion Irradiation of Al$_2$O$_3$ barrier coatings

Please, step by M. Vanazzi’s poster!
Model of evolution

moderate dpa
- ultra-fine nanoceramic GB-driven deformation
- highest fracture toughness

high dpa
- fine nanoceramic GB-driven deformation
- sub-linear grain growth

pristine
- bi-phase nanocomposite shear banding
- highest fracture strength

end-of-life dpa
- nanoceramic GB-driven deformation
- highest stiffness

Sublinear grain growth
Heavy ion irradiation (Au + W): nanoimpact

Impact energy is dissipated more efficiently in irradiated samples.
Heavy ion irradiation (Au + W): nanoimpact – 10 mN
Conclusions
Conclusions

- **Barrier films engineerization at nanoscale level**
 - Strong adhesion substrate/coating with metal-like behavior

- **Irradiation tests with heavy ions (Au + W)**
 - Radiation-induced **crystallization** with enhancement of mechanical properties

- **Chemical compatibility tests in Pb-Li**
 - Preliminary results from **1,000 hours** exposure in static Pb-16Li

- **Permeation tests with H₂/D₂ to simulate the effect of Tritium**
 - PRF evaluation tuning film thickness as well as morphology
 - Maximum PRF value (with PERI set up) close to **100,000** considering DEMO requirements of **15 < PRF < 1,000** @ 550 °C
 - Coatings effectiveness confirmed by secondary measurements
 - **No significant degradation** after thermal cycling and/or irradiation

To do list:

- Complex shape coating
- Scale up of the PLD process
- Neutron irradiation

IAEA Workshop 05-07/07/2017 fabio.difonzo@iit.it
Thank You
for your attention!
Radiation damage in polycrystalline sapphire

- high density of small voids and dislocation loops
- anisotropic void swelling along c-axis
- intergranular micro-cracking to accommodate stress
Radiation damage in polycrystalline sapphire

neutrons

![Image of neutron damage](image1.png)

- high density of small voids and dislocation loops
- anisotropic void swelling along c-axis
- intergranular micro-cracking to accommodate stress

ions

![Image of ion damage](image2.png)

- possible to obtain equivalent microstructural features
- what is the best way to obtain such features?

IAEA Workshop 05-07/07/2017