Off-axis NBI-driven energetic particle modes at ASDEX Upgrade

Ph. Lauber1, B. Geiger1, M. Maraschek1, L. Horvath2, C. Di Troia6, G. Papp1, M. Dunne1, A. Biancalani1, M. Schneller1, X. Wang1, I. Classen4, V. Igochine1, A. Mlynek1, M. García-Muñoz1,5, V. Nikolaeva1,1, L. Guimarais3, NLED Enabling Research Team, and the ASDEX Upgrade Team

1Max-Planck-Institut für Plasmaphysik, Garching, Germany
email: pwl@ipp.mpg.de

2Institute of Nuclear Techniques, BME, Budapest, Hungary

3Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade Técnica, 1049-001 Lisboa, Portugal

4FOM Institute Differ - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, 3430 BE Nieuwegein, The Netherlands

5Department of Physics, University of Seville, Seville, Spain

6ENEA, Frascati, Italy

The off-axis injection of neutral beam ions (2.5 MW) during the current ramp-up phase in ASDEX Upgrade gives rise to strongly non-linear energetic particle bursts emerging from the TAE gap. The modes seem to be similar to observations on JT-60U [Shinohara, 2002-2004] or on spherical tokamaks with the important difference that at ASDEX Upgrade the ratio of the velocity of injected beam ions compared to the Alfven velocity is far below 1 ($v_{NBI}/v_A \sim 0.4$). The fast ion β in these discharges is transiently comparable or even larger than the thermal β allowing one to explore a unique parameter space relevant for the stability of burning plasmas. Additionally, a clear correlation of these bursts and energetic particle driven geodesic acoustic modes (EGAMs) is observed, indicating a velocity space coupling of both modes.

Based on various diagnostics measurements and beam deposition calculations for the energetic particle distribution function, a kinetic stability analysis will be shown, investigating the drive mechanism of the EGAMs and the TAE bursts. The non-linear features of the modes will be discussed. More generally, these results will allow us to understand in a detailed way the transition from weakly-driven Alfven modes to strongly-driven energetic particle modes and the interaction mechanisms of AEs with zonal modes, both experimentally and theoretically/numerically.

Figure 1: Spectrogram of the magnetic pick-up coil signal in the presence of off-axis (co-direction) NBI drive (#31213).

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.