Non-diffusive transport of suprathermal ions in toroidally magnetized plasmas

Ivo Furno

F. Avino, A. Bovet, A. Fasoli, K. Gustafson, P. Ricci

Centre de Recherches en Physique des Plasmas, EPFL, Switzerland

14th IAEA TM on Energetic Particles in Magnetized Confinement Systems, September 1-4 2015, Vienna, Austria
Why suprathermal ions? Why in basic devices?

In fusion plasmas, suprathermal ions are created by
- Fusion reactions (alpha particles) and additional heating (NBI, ICRH)
- Crucial for burning plasmas (heating, non-inductive current drive)

In space and astrophysical plasmas, suprathermal ions are ubiquitous
- Cosmic rays and solar energetic particles
- Can be harmful to spacecraft and are essential for Space Weather

Measurements in fusion devices or space plasmas are difficult

Basic plasma physics devices allow simpler investigations
- Many details of turbulence and suprathermal ions are directly measured
- Key experimental physics parameters can be varied systematically
- Direct comparison with numerical simulations ➔ code validation
Diffusive and non-diffusive transport

Spreading in time of the particle positions to extract an exponent:

\[\sigma^2 \propto t^\gamma \]

- \(\gamma > 1 \) “super-diffusive”
- \(\gamma = 1 \) “diffusive”
- \(\gamma < 1 \) “sub-diffusive”

Are all these regimes accessible to suprathermal ions?
Which key elements determine the regime?
How can we identify them?
Outline

- The TORPEX device, experimental setup and diagnostics
 - ideal interchange turbulence
 - suprathermal ions source and detector
- Experimental measurements
 - energy dependence of suprathermal ion transport
- Comparison experiments-simulations
 - evidence for super- and sub-diffusive regimes
- Time-resolved measurements
- Conclusions
TORPEX (TORoidal Plasma EXperiment) at CRPP

major radius = 1m, minor radius = 20cm

4 vertical field coils

Magnetron for plasma production

28 toroidal field coils
TORPEX and the simple magnetized torus (SMT)

Toroidal coils

$B_t \sim 800$ Gauss
TORPEX and the simple magnetized torus (SMT)

- **Toroidal coils**
 - Magnetic field: $B_t \approx 800$ Gauss

- **Vertical coils**
 - Magnetic field: $B_v \approx 10$ Gauss
TORPEX and the simple magnetized torus (SMT)

Helical field lines winding N times around the torus
∇B and curvature \Rightarrow interchange drive
SMTs have similarities with tokamak SOLs

Scrape-Off Layer
open field lines
∇B and curvature

Last Closed Flux Surface
magnetic topology change

Perpendicular turbulent transport
SOL parallel flow
Open field lines and sheath physics
At low N, SMTs are dominated by field-aligned turbulence.

- Ideal Interchange
- Resistive Interchange

\[k_{||} = 0 \]

Hydrogen
\[N \sim 2 \]
\[T_e \sim 2-5 \text{eV}, \quad T_i < 1 \text{eV} \]
\[n_e \sim 3 \times 10^{16} \text{m}^{-3} \]

Field-aligned turbulence

- Drift

P. Ricci and B. Rogers, PRL 2010
Ideal interchange regime: waves and blobs

I. Furno, PRL 2008
Ideal interchange regime: waves and blobs
Suprathermal ion source and detector

Three-dimensional profile of the suprathermal ion beam

Time-averaged meas.
Time-resolved meas.

Suprathermal ion source
Gridded energy analyzer
Tracer Li$^+$ ions 10eV-1keV

x
y
z
Distance from the source = 0.2 m

E = 70 eV
E/Te ≈ 46

Fast ion injection location

3D time-averaged profile at two ion energies
3D time-averaged profile at two ion energies

$E = 70 \text{ eV}$
$E/T_e \approx 46$

$E = 30 \text{ eV}$
$E/T_e \approx 20$

Distance from the source = 0.2 m
3D time-averaged profile at two ion energies

E = 70 eV
$E/T_e \approx 46$

E = 30 eV
$E/T_e \approx 20$

Distance from the source = 2.2 m
The beam spreading is different for different energies

Exp. $E = 70$ eV
Exp. $E = 30$ eV

![Graph showing the radial variance of the beam for different energies.](image)
Ion tracers in simulated turbulent fields

GBS 3D fluid code
Electrostatic, Drift-reduced Braginskii equations
Tracer trajectory solver

P. Ricci, PoP 2009
Particle spreading in time \Rightarrow transport regime

- **Ballistic** $\gamma_R = 2$
- **Interaction** $\gamma_R < 2$

![Graph showing particle spreading in time and transport regime](image_url)
Phase space for suprathermal ion transport

Normalized energy (E/T_e)

Normalized fluctuations amplitude (e/T_e)

γ_R
Phase space for suprathermal ion transport

Gyro-averaging

Drift-averaging

Normalized energy (E/T_e)

Normalized fluctuations amplitude (e/T_e)

Drift-averaging condition

Gyro-averaging condition

γ_R
Comparison with simulations: synthetic diagnostics

Toroidal position: $\phi = 0.016\, \text{rad}$

![Diagram 1](image1)

![Diagram 2](image2)
Two regimes for fast ion transport

30eV: $\gamma=1.2$ superdiffusive

$\gamma=0.92 \sim$ diffusive

$\gamma=0.51$ subdiffusive
The TORPEX device, experimental setup and diagnostics
- ideal interchange turbulence
- fast ions source and detector
Experimental measurements
- fast ion transport: energy dependence
Comparison experiments-simulations
- Evidence for super and subdiffusive regimes
Time-resolved measurements
Conclusions
Time-resolved measurements in super- and sub-diffusive regimes

- Time traces of the detector at 40 cm
 - \(E = 30 \text{ eV} \): superdiffusive
 - \(E = 70 \text{ eV} \): subdiffusive

- Probability density functions

19
Different statistics in different transport regimes

Poloidal cross sections at 40 cm from the source

Time-averaged Current density [A/m²]

«Crown» of high skewness

Skewness profile

E = 30 eV
superdiffusive

E = 70 eV
subdiffusive
The ion intermittency is causally related to turbulence

\[\text{Transfer Entropy} \]

\[\text{HEX} \rightarrow \text{GEA} \]
The ion intermittency is causally related to turbulence
The ion intermittency is causally related to turbulence.
The entropy transfer is mediated by blobs

Conditionally averaged suprathermal ion current density [A/m^2]

$E = 30 \text{ eV}$
superdiffusive

$E = 70 \text{ eV}$
subdiffusive

A. Bovet, PRL 2014
Conclusions

Simple plasma devices offer great possibilities to investigate the fundamentals of suprathermal ion – turbulence physics.

On TORPEX, experiments and numerical simulations reveal different non-diffusive regimes for suprathermal ions depending on their energy and turbulence amplitude.

Time-resolved measurements reveal the effect of blob transport.

Link between Eulerian time-resolved measurements (tokamaks, spacecrafts) and 3D time-averaged measurements.