Investigating fast-ion transport due to sawtooth crashes using collective Thomson scattering

Jesper Rasmussen¹, S. K. Nielsen¹, M. Stejner¹, B. Geiger², A. S. Jacobsen¹, F. Jaulmes³, S. B. Korsholm¹, F. Leipold¹, F. Ryter², M. Salewski¹, M. Schubert², J. Stober², D. Wagner², the ASDEX Upgrade Team² and the EUROFusion MST1 Team

¹Technical University of Denmark ²IPP Garching ³FOM-DIFFER
Impact of sawteeth on fast ions

- Magnetic reconnection when $q_{\text{core}} < 1$
- Redistribute particles and can cause NTMs \rightarrow disruptions

Periodic crash in electron $T_e + N_e$:

![Graph showing periodic crash in electron temperature and density over time](image)
Impact of sawteeth on fast ions

Significant redistribution of fast ions due to

• Ion movement along evolving field lines (Kadomtsev model)
• $\mathbf{E} \times \mathbf{B}$ drifts caused by E-fields arising during reconnection

...but still unclear how redistribution depends in detail on fast-ion orbit topology

• Magnetic reconnection when $q_{core} < 1$
• Redistribute particles + can cause NTMs \rightarrow disruptions
Dependence on fast-ion orbits observed

Collective Thomson scattering (CTS) at TEXTOR: 50% reduction for passing ions

Electron temperature

Fast-ion density

Passing fast ions

Trapped fast ions

S. K. Nielsen et al 2010, PPCF, 52, 092001
Fast-ion D-alpha spectroscopy (FIDA) at ASDEX Upgrade:

Dependence on fast-ion orbits observed

FIDA: Good agreement with Kadomtsev model
Dependence on fast-ion orbits observed

Fast-ion D-alpha spectroscopy (FIDA) at ASDEX Upgrade:

FIDA: Good agreement with Kadomtsev model

Previously: Measurements at different machines
Now: Multiple diagnostics on one machine = AUG
Collective Thomson scattering (CTS) at ASDEX Upgrade

• 105 GHz probe beam \((k^i) \) injected into plasma (\(\sim 600 \text{ kW, unabsorbed} \))

• Beam scatters off plasma fluctuations \((k^\delta) \)

• Scattered signal \((k^s = k^i + k^\delta) \) contains information on fast-ion distribution function \(f \) along \(k^\delta \):

\[
g(u) = \int dv f \delta \left(\frac{v \cdot k^\delta}{k^\delta} - u \right)
\]

S. K. Nielsen et al 2015, PPCF, 57, 035009
Interpreting CTS fast-ion data

CTS spectra fitted with a scattering model to obtain the 1D projection of f:

$$g(u) = \int dv f \delta \left(\frac{\mathbf{v} \cdot \mathbf{k}^\delta}{k^\delta} - u \right)$$
Interpreting CTS fast-ion data

CTS spectra fitted with a scattering model to obtain the 1D projection of f:

$$g(u) = \int dv f \delta \left(\frac{\mathbf{v} \cdot \mathbf{k}^\delta}{k^\delta} - u \right)$$

Each u related to energy-pitch space through weight functions w:

$$g(u) = \int w f(E, p) \, dE \, dp$$
Sawtooth experiments with CTS at AUG

CTS volume: \((R,z) = (1.62, 0.06)\)m
\(\rho_p = 0.15, \angle(k^\delta, B) = 101^\circ\)

\(\rho_p = 0.4 \approx\) sawtooth inversion radius from soft X-rays
Sawtooth experiments with CTS at AUG

CTS volume: \((R, z) = (1.62, 0.06)\)m
\(\rho_p = 0.15, \angle(k^\delta, B) = 101°\)

\(\rho_p = 0.4 \approx\) sawtooth inversion radius from soft X-rays

"Crash 1" "Crash 2"
Spectra respond to sawtooth crashes

Crash 1

$\text{t} = 2.29 \text{ s}$

AUG #30382

Crash 2

$\text{t} = 2.51 \text{ s}$
Spectra respond to sawtooth crashes in agreement with forward model

Forward model based on
- scattering geometry (raytracing)
- measured thermal-ion parameters (other diagnostics)
- Fast-ion distrib. function \(f(E,p) \) (TRANSP)
CTS fast-ion distribution functions: Suggest 50% redistribution across crashes
CTS fast-ion distribution functions: Suggest 50% redistribution across crashes

At $1.5 \times 10^6 \text{ m/s} < |u| < 3.5 \times 10^6 \text{ m/s}$: Fast-ion reduction of

- **Crash 1**: $40 \pm 24\%$
- **Crash 2**: $60 \pm 22\%$
At $1.5 \times 10^6 \text{ m/s} < |u| < 3.5 \times 10^6 \text{ m/s}$: Fast-ion reduction of:

$40 \pm 24\%$

$60 \pm 22\%$

• Compare to **TRANSP** + Kadomtsev (guiding center)

• **EBdyna_go**: Kadomtsev + full orbits in evolving E, B fields
 (F. Jaulmes et al. 2014, NF, 54, 104013) - see poster **P11** by F. Jaulmes
Vast majority of fast ions in CTS volume are passing (volume located centrally just on HFS)

Simulated distribution functions: TRANSPP vs. EBdyna_go

Crash 1

Crash 2

Vast majority of fast ions in CTS volume are passing (volume located centrally just on HFS)
1D fast-ion distribution functions: CTS vs. TRANSP

At 1.5×10^6 m/s < $|u|$ < 3.5×10^6 m/s: Fast-ion reduction of

- **CTS**: $40 \pm 24\%$
- **TRANSP**: $44 \pm 11\%$
- **CTS**: $60 \pm 22\%$
- **TRANSP**: $56 \pm 14\%$
1D fast-ion distribution functions: CTS vs. EBdyna_go

At 1.5×10^6 m/s < $|u|$ < 3.5×10^6 m/s: Fast-ion reduction of

- CTS: $40 \pm 24\%$
- EBdyna: $59 \pm 15\%$

- CTS: $60 \pm 22\%$
- EBdyna: $49 \pm 12\%$
Comparison of post-crash predictions

Crash 1

Crash 2

$g(u) [10^{12} \text{ s}^{-4}]$

$u [10^6 \text{ m/s}]$

$AUG \#30382$

$g(u) [10^{12} \text{ s}^{-4}]$

$u [10^6 \text{ m/s}]$
FIDA signal also reduced by ~50% for passing ions

Similar results for comparable discharges:

- AUG #30809: Geiger et al. 2015, PPCF 57, 014018
- AUG #30815: Geiger et al. 2015, NF 55, 083001
Preliminary FIDA + CTS tomography (4+1 views) revealing redistribution in (E,p) space

Tomography, Crash 1

TRANSP

A. S. Jacobsen et al, in prep. See also poster P36 by L. Stagner
Conclusions & outlook

First CTS study of sawtooth redistribution of fast ions at AUG:

- 50% fast-ion reduction in CTS volume (passing ions only)
- Good agreement with FIDA measurements and with TRANSP/Kadomtsev + EBdyna_go

CTS can discriminate between sawtooth models:

- Forthcoming experiments with other scattering geometries
- Tomographies using FIDA + CTS data (+ NPA, neutrons etc.)
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Relative change in distribution function predicted with TRANSP

Illustrates redistribution in (E,p) at a given (R,z)
Fast-ion loss detectors show ~10% increase in signal at sawteeth

M. Garcia-Munoz, J. Galdon, N. Lazányi
Raw neutron rates:
Also only very modest variations

No strong drops across crashes →
Most redistributed fast ions remain confined
Calibrated neutron rates + plasma stored energy

Measured neutron rates from neutron counters at the dt = 10 ms time res. of TRANSP.

Offset subtracted + scaled to match TRANSP.

(measured rates are >> 0 even when no NBI/ECRH is on)
Contributions to CTS spectra

105 GHz gyrotron
Comparison of post-crash predictions

Crash 1

\[T \cdot E \cdot f(E,p) \]

CTS weight function, \(u = +2e6 \text{ m/s} \)
Preliminary FIDA + CTS tomography (4+1 views) revealing redistribution in (E,p) space

A. S. Jacobsen et al, in prep. See also poster by Luke Stagner

Detailed comparison in progress