High radiation scenarios in pronounced detached divertor conditions at ASDEX Upgrade

M. Bernert1, F. Reimold2, R. Dux1, T. Eich1, A. Huber2, A. Kallenbach1, B. Lipschultz3, M. Wischmeier1, the EUROfusion MST1 team4 and the ASDEX Upgrade Team

1Max-Planck-Institut für Plasmaphysik, Garching, Germany
2Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Jülich
3University of York, York Plasma Institute, Heslington, York, United Kingdom
4See http://www.euro-fusionscipub.org/mst1.

1st IAEA TM on Divertor Concepts, Vienna, 29th Sep – 2nd Oct 2015
Motivation

DEMO requirements:

- **Detached divertor** necessary to reduce power and particle flux

 With deuterium: No full / pronounced detachment in H-mode

 \[\Rightarrow\] Seeding impurities necessary for power dissipation

- **95%** of exhaust power needs to be **dissipated**

 Only achievable with radiation inside and outside confined region

 \[\Rightarrow\] Core and edge radiators necessary

Possible with a conventional divertor using strong impurity seeding
Motivation

DEMO requirements:

- **Detached divertor** necessary to reduce power and particle flux

 With deuterium: No full / pronounced detachment in H-mode

 ⇒ Seeding impurities necessary for power dissipation

- **95%** of exhaust power needs to be **dissipated**

 Only achievable with radiation inside and outside confined region

 ⇒ Core and edge radiators necessary

Goal: Test scenarios in present day experiments

Match SOL plasma

\[P_{sep}/R \approx 15\text{MW/m}, \quad f_{GW} \approx 1, \quad H_{98} \approx 1 \]

- What is the maximum \(f_{\text{rad}} \)?
- How stable are these regimes?
The ASDEX Upgrade Divertor

- \(P_{\text{heat}} = 27 \text{ MW} \) (available 20 MW NBI, 6 MW ECRH, 6 MW ICRH)
- \(R = 1.65 \text{ m} \)

\[
P_{\text{heat}}/R \approx 16 \text{ MW/m}
\]

- Fueling
 - Main fueling and seeding from divertor
 - High-Z seeding from outer midplane

- Divertor
 - Closed divertor
 - Vertical targets
 - Tungsten coated CFC
 - Solid tungsten tiles (outer target) \((q_{\text{max}} > 10 \text{ MW/m}^2) \) [Hermann, NF 2015]
Detachment (in H-mode)

- Inner divertor typically detached

- Progress of outer divertor detachment:
 - Partially
 - Pronounced
 - Fully

- Outer divertor detachment correlated with increase of plasma density
 - Changed fueling?

- Detachment in H-mode only achieved with intense seeding, e.g. N
 - Full detachment only inter-ELM
 - ELMs: Complex sequence of detachment states
The different radiators

Various seeding impurities possible
- Nitrogen: Divertor
- Neon: SOL
- Argon: SOL & pedestal
- Krypton: Pedestal & core

What is the optimal impurity mix?
High radiation scenarios

Nitrogen:

\[P_{\text{heat}} = 21 \text{ MW} \]
\[P_{\text{heat}}/R = 12.7 \text{ MW/m} \]

- Pronounced detachment

\[f_{GW} \approx 0.95 \]

\[H_{98} \approx 0.9 \]

- Small reduction of confinement

\[c_{N,\text{core}} \approx 2-3\% \]

\[f_{\text{rad}} \approx 90\% \]

- Dominant radiation from inside confined region
High radiation scenarios: Nitrogen

- Strong radiator at X-point
 \[\Rightarrow \text{MARFE-like radiation condensation} \]

- With ongoing detachment:
 Radiator moves at X-point from outside to inside of confined region

- Time evolution of several seconds
 \[\Rightarrow \text{RT control possible} \]
High radiation scenarios: **Nitrogen**

- Radiator can be reproduced by SOLPS
- Temperature reduction within confined region
 - $T_e < 5\text{eV}$
 - D line radiation observed

\Rightarrow Parallel temperature gradients inside confined region!
High radiation scenarios: **Nitrogen**

- Radiator can be reproduced by SOLPS

- Temperature reduction within confined region
 - $T_e < 5\text{eV}$
 - D line radiation observed

 \Rightarrow Parallel temperature gradients inside confined region!

- Pedestal top pressure reduced at similar core performance
High radiation scenarios

Krypton:

\[P_{\text{heat}} = 19 \text{ MW} \]
\[P_{\text{heat}}/R = 11.5 \text{ MW/m} \]

- Pronounced detachment

\[f_{GW} \approx 0.8 \]

- Small reduction of confinement

\[H_{98} \approx 0.9 \]

- Low impact on dilution

\[c_{Kr} < 0.1\% \]

- Radiating ring around pedestal top

![Graph showing Langmuir Probes](image)
High radiation scenarios: **Krypton**

- Krypton radiates in ring at pedestal top
- Nonlinear response to Kr seeding level
 ⇒ poloidally symmetric radiation condensation?
- Discharges only quasi-stable (stable for less than $10 \tau_E$)
- Kr modulated by ELMs
 - ELM frequency reduces
High radiation scenarios:

Stable (AUG #30503)

- $P_{\text{heat}} = 19 \text{ MW}$
- Radiation within pedestal
- Temperature reduction compensated by density increase

Reducing (AUG #31648)

- $P_{\text{heat}} = 10.5 \text{ MW}$
- Radiation moves inside
- Density increase too small

⇒ Radiation outside pedestal top
High radiation scenarios: Comparison

Nitrogen:
- Pronounced detachment of outer divertor at highest heat fluxes
- Most radiation inside confined region
- Poloidally localized radiation (above X-point) $\rho_{pol} \geq 0.985$
- Small reduction of confinement (<10%)
- f_{ELM} increases
- Quasi-stable for more than 2s

$Z_{eff}(3\%N) \approx 1.91, d_{fuel}(3\%N) \approx 6\%$

Krypton:
- Radiating ring $0.8 \leq \rho_{pol} \leq 1$
- Impact on confinement varying
- f_{ELM} decreases
- Stable vs ELMs, full stability not shown yet
- Lower impact on fuel dilution

$Z_{eff}(1\%Kr) \approx 1.91, d_{fuel}(1\%Kr) \ll 1\%$
Radiation concentrated at X-point independent of seeding species

- Peaking of radiation density \((\text{W/m}^3)\) varies with seeding species as well as poloidal extent
- For Ne + N\(_2\) extent appears similar to distribution in Ne
- No radiating belt formed
Summary

Detached divertor possible at high heating powers using N and/or Kr
- Conventional divertor
- \(P_{\text{heat}}/R \approx 12 \text{ MW/m} \) (Demo: \(P_{\text{sep}}/R=15\text{MW/m} \))
- \(f_{\text{rad}} \leq 90\% \)
- Dominant radiation inside the confined region
- Scenarios quasi-stable (N)
- Real time control most likely possible
- Impact on confinement differs with radiation location (Kr)
- A possible solution for DEMO and ITER?

Outlook
- Stability (Kr) and controllability (N) to be tested
- Where do Ne and Ar radiate in AUG?
Open questions, points of discussion

• What is the stabilizing mechanism for the X-point radiator?
• Why didn’t it work for carbon walls?

• How does the radiation influence the H-mode threshold?
• Does maybe P_{ped} matter instead of P_{sep}?
• How to estimate P_{sep}?

• What is the best impurity mix?
• Do future machines need other impurities (e.g. xenon)?

• Impurity behaviour with pellet fueling?
• Increased impurity divertor compression?