NBI Systems for DEMO: Status and Prospects

Ursel Fantz, Christian Hopf
P. Sonato, A. Simonin, R. McAdams, M. Tran,
Towards the ITER NBI systems

Heating beams: 16.7 MW at 1 MeV
- Based on neg. ions

Heating beams
- 50% EU, 50% JA

Diagnostic beam
- 100% IN

- Bellows
- Gate valve
- Calorimeter
- Residual ion dump
- Neutralizer
- Accelerator
- RF ion source

~ 25 m

NBTF in Padua, Italy

ELISE, 2012+
- Validate or alter source concept

SPIDER, 2017+
- Gain experience with operation of large sources

MITICA, 2021+
- Validate or alter accelerator and beam line components

ITER NBI

Based on neg. ions

Heating beams
- 50% EU, 50% JA

Diagnostic beam
- 100% IN

- Bellows
- Gate valve
- Calorimeter
- Residual ion dump
- Neutralizer
- Accelerator
- RF ion source

~ 25 m
NBI activities for DEMO on an international level

Japan, Naka: JT60-SA

- N-NBI system (H and D beams)
 1 beam line, 500 keV, 10 MW, 100 s
 Arc sources → maintenance
- 1 MeV test facility
 1 MeV, 60 s
 0.97 MeV, 190 A/m², 60 s ✓
- 1 MeV accelerator for NBTF
- Priority: ITER
NBI activities for DEMO on an international level

Japan, Naka: JT60-SA

- N-NBI system (H and D beams)
 1 beam line, **500 keV, 10 MW, 100 s**
 Arc sources -> maintenance

- **1 MeV test facility**
 1 MeV, 60 s
 0.97 MeV, 190 A/m², 60 s ✓

- **1 MeV accelerator for NBTF**
- **Priority: ITER**
NBI activities for DEMO on an international level

Japan, Naka: JT60-SA
- N-NBI system (H and D beams)
 - 1 beam line, 500 keV, 10 MW, 100 s
 - Arc sources -> maintenance
- 1 MeV test facility
 - 1 MeV, 60 s
 - 0.97 MeV, 190 A/m², 60 s ✓
- 1 MeV accelerator for NBTF
- Priority: ITER

Japan, NIFS: LHD
- N-NBI system (H beams)
 - 3 beam lines, 180 keV, 16 MW, up to 120 s
 - Arc sources -> maintenance
- Source test facility for optimization
- Priority: ITER

Activities started to replace arc sources by RF sources, also in view of DEMO.
NBI activities for DEMO on an international level

Korea, Daejeon: KSTAR in view of K-DEMO
- NBI systems (pos. ions)
 100 keV, 5.5 MW, 70 s
 Upgrade to 12 MW (also off-axis), in 2018
 Current drive studies for 2021+
 Arc sources -> maintenance
- R&D on RF sources

NBI-1 (100 keV)
6MW, 100 keV, on-axis

NBI-2 (100 keV)
6MW, (on- & off-axis) ('18)

China, ASIPP: EAST in view of CFETR
- NBI systems (pos. ions)
 80 keV, 4+4 MW, ? s
 Arc sources -> maintenance
- N-NBI for CFETR: 300 keV, 50 MW
- Low level R&D on RF sources

India, IPR
- DNB (H⁻) for ITER
- R&D on RF sources

Concept similar to EU concept, e.g. 800 keV envisaged, RF sources.
NBI activities for DEMO within Eurofusion

The concept developed under the System Engineering Task within WPHCD
N-NBI systems: 0.8 – 1 MeV, 50 MW with 2 – 3 beam lines for 7200 s
EU DEMO: Beam line concept

The concept developed under the System Engineering Task within WPHCD
N-NBI systems: 0.8 – 1 MeV, 50 MW with 2 – 3 beam lines for 7200 s

Diagram showing various components like Laser sources, Electron dump, Modular RF ion sources, Accelerator, NEG pumps, Neutron dump, Absolute gate valve, Duct heat dump #1, Duct heat dump #2, Residual ion dump, and NEG pump.
A modular extraction / acceleration system for 0.8 – 1 MeV by using a 4 or 5 stage accelerator with 200 keV each
Current drive efficiency of NBI

 Dependence on beam energy for a given temperature (ITER parameters)

At 25 keV:
7% less for 800 keV
10% more for 2 MeV
The concept is focused on “DEMO advanced” but is compatible with “ITER baseline”.

<table>
<thead>
<tr>
<th></th>
<th>ITER</th>
<th>DEMO ITER baseline</th>
<th>DEMO advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted current density [A/m²]</td>
<td>286</td>
<td>260</td>
<td>200</td>
</tr>
<tr>
<td>No. of apertures</td>
<td>1280</td>
<td>1280</td>
<td>60</td>
</tr>
<tr>
<td>No. of sub-sources</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Extracted current [A]</td>
<td>56.33</td>
<td>51.20</td>
<td>36.93</td>
</tr>
<tr>
<td>Acceleration voltage [kV]</td>
<td>1000</td>
<td>1000</td>
<td>800</td>
</tr>
<tr>
<td>Stripping losses</td>
<td>30%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Accelerated current [A]</td>
<td>39.43</td>
<td>46.08</td>
<td>33.23</td>
</tr>
<tr>
<td>Neutraliser efficiency</td>
<td>0.55 (Gas)</td>
<td>0.6 (with energy rec.)</td>
<td>0.7 (Laser)</td>
</tr>
<tr>
<td>Power per injector [MW]</td>
<td>16.5</td>
<td>25</td>
<td>16.8</td>
</tr>
<tr>
<td>Beam line transmission efficiency</td>
<td>0.8</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Injector efficiency</td>
<td>0.26</td>
<td>0.44</td>
<td>0.51</td>
</tr>
<tr>
<td>No. of injectors</td>
<td>2 (3)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Total power [MW]</td>
<td>33 (50)</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
The modular RF-driven ion source concept as for ITER

Prototype source

≈ 1.5 A

0.6 m

0.3 m

0.9 m

RF power
100 kW

1 m

x 4

ELISE source

20 A

ITER sources: NBTF, HNB & DNB

40 A

2 m

x 2

RF power
400 kW

RF power
800 kW

0.9 m

RF power
20 A

40 A
Critical issues with the RF generators → source availability and reliability

RF generator development: replace free-oscillators by solid state generators (amplifiers)

- Efficiency → about 90% (instead of 50-60%)
- No water cooling system
- Stable frequency → matching easier
- High reliability → series produced radio transmitters

Automatic power control and frequency matching developed with industry
EU DEMO: Ion source and RF issues

Critical issues with mutual RF coupling → source availability and reliability

1 RF generator per source: change or adapt RF drivers to source geometry

Larger driver (AUG source concept) already successfully tested at prototype source.
EU DEMO: Alternative ion source concepts

Reduce required RF power → source reliability
Increase source efficiency: ion current / kW power

Helicon-type sources

Bird-cage antenna

Helmholtz coils ($B_{\text{max}} = 14 \text{ mT}$)

RF circuit
13.56 MHz
600 W

Both concepts under investigation in lab scale → promising results

13.56 MHz,
5 kW, 15 mT
Stability of source performance and caesium consumption
→ source reliability and maintenance

Present systems need Cs to
- generate sufficient neg. ions
- suppress co-extracted electrons

Cs consumption is estimated to be
- 40 g / year at ITER \[^1\] for one beam line
- 350 – 700 g / year for DEMO \[^2\] for one beam line

- Reduce Cs consumption
 - source operation, Cs ovens
 - Cs doped materials
- Find Cs alternatives

Consumption recently reduced by a factor of 4
EU DEMO: Ion source

Investigation of Cs alternatives → Cs-free ion source
→ source reliability and maintenance

Measurement of negative ion yields of various promising materials (lab experiment)

Focus on low work function materials: cathode materials and doped materials as MoLa or ...
EU DEMO: Ion source

Investigation of Cs alternatives → Cs-free ion source

→ source reliability and maintenance

Measurement of negative ion yields of various promising materials (lab experiment)

LaB$_6$: feasibility tests on grid manufacturing

Focus on low work function materials: cathode materials and doped materials as MoLa or ...
EU DEMO: Ion source and accelerator

Backstreaming ions → might limit the lifetime of source
- formation of positive ions in the accelerator by collisions with background gas
- accelerated to back plate of ion source
- small spots due to focusing effects

Very high power densities (80 MW/m²)

Might set upper limit for beam energy due to power handling limits

- Reduction of neutral gas density
- New accelerator concepts, ...

Footprint of one beamlet

Calculations of the back streaming positive ions at the back plate of the ITER source

[P. Agostinetti, RFX-MITICA-TN-33 (2011)]
Neutralizer – a key component to boost the plug-in efficiency from \(\approx 25\% \) to about 60\%

Different neutralizer concepts

- Gas neutralizer with **energy recovery** \(\rightarrow \approx 35\% \)
- Plasma or Li neutralizer \(\rightarrow \approx 35\% \) with **energy recovery** \(\rightarrow \approx 45\% \)

Energy recovery of neg. ions

Recirculation of the un-neutralized ions to reduce the drain current in the main HV power supply
- slow down the un-neutralized ions
- collection at low energy and low power density

make use of positive ions as well

McAdams, AIP Conf. Proc 1515 (2013) 559

Positive ions recovery will be tested soon
EU DEMO: Neutralizer concepts

Neutralizer – a key component to boost the plug-in efficiency from \(\approx 25\% \) to about 60%.

Different neutralizer concepts

- Gas neutralizer with **energy recovery** \(\rightarrow \approx 35\% \)
- Plasma or Li neutralizer \(\rightarrow \approx 35\% \) with **energy recovery** \(\rightarrow \approx 45\% \)
Neutralizer – a key component to boost the plug-in efficiency from \(\approx 25\% \) to about 60\%

Different neutralizer concepts

- Gas neutralizer with energy recovery \(\rightarrow \approx 35\% \)
- Plasma or Li neutralizer \(\rightarrow \approx 35\% \) with energy recovery \(\rightarrow \approx 45\% \)
Neutralizer – a key component to boost the plug-in efficiency from $\approx 25\%$ to about 60%

A radically new concept: the photon (laser) neutralizer $\rightarrow \approx 60\%$

$$D^- + h\nu \rightarrow D^0 + e^-$$

Neutralization efficiency almost 100%

Challenging project at limits of laser systems (800 kW), ... ⇒ Feasibility?

Additional benefits:
- Reduced gas throughput & pumping requirements
- Shorter beam line
- No ion dumps, no bending magnets, ...
- May reduce stripping losses and source size

Direct drive cavities

Neutralizer – a key component to boost the plug-in efficiency from \(\approx 25\% \) to about 60\%

A radically new concept: the photon (laser) neutralizer \(\rightarrow \approx 60\% \)

\[
D^- + h\nu \rightarrow D^0 + e^-
\]

Neutralization efficiency almost 100\%

Challenging project

at limits of laser systems (800 kW), ...

\(\Rightarrow \) Feasibility?

Additional benefits:

- Reduced gas throughput & pumping requirements
- Shorter beam line
- No ion dumps, no bending magnets, ...

May reduce stripping losses and source size

Fabry-Pérot-cavities

- High R mirrors
- Ion beam
- Laser source (Nd:YAG at 1064nm)
- (Additional enhancement of stored power via constructive interference possible)

Kovari et al., Fus. Eng. Design 85 (2010)
EU DEMO: Activities on the laser neutralizer concept

Proof-of-principle experiments in lab-scale
Experimental realization of a substantial (measurable, i.e. 10% - 25%) neutralization of a small negative ion beam:
8 W cw-laser coupled to external cavity (ampl. 10^4)
Realization envisaged with the Siphore concept

A photoneutralizer-based NBI system aiming for a high power photon flux (~3 MW) generated within a Fabry–Perot cavity

Simonin, Nucl. Fusion 55 (2015) 123020
Realization envisaged with the Siphore concept

A photoneutralizer-based NBI system aiming for a high power photon flux (~3 MW) generated within a Fabry–Perot cavity.
EU DEMO: Activities on the laser neutralizer concept

Design activities although laser neutralizer still in the very early development concept

- Two structures for improved **dimensional control**
 - Upper flange supporting the two structures
 - Stainless steel support structure (temperature controlled)
 - Laser mirrors

1. **Internal structure**: only for laser optical systems, temperature very carefully controlled
 - 2 lasers (35 kW each)

2. **External structure**: for other components (ED, ND, NEG)
 - Stainless steel support structure
 - Electron dump
 - Non Evaporable Getter pump
 - Neutron dump
EU DEMO: Interface of NBI with breeding blanket

Study of different options

Option 2:
Injection angle: 30°
Port size: 0.7 m x 0.7 m
EU DEMO: Reduction of breeding blanket by NBI ports

Opening size determined by
- beamline length
- beamlet divergence
- the way to cut and hole in neutron shielding

Impact on TBR determined by (Giovanni Grossetti, KIT)
- opening size
- poloidal position

Of the same order as for the other systems \(\approx 1\% \)

ITER size: \(0.55 \times 0.97 \text{ m}^2 \)

<table>
<thead>
<tr>
<th></th>
<th>DEMO 1</th>
<th>TBR reduction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>narrow opening</td>
<td>HCBP</td>
</tr>
<tr>
<td>ITER-like source</td>
<td>cut (a)</td>
<td>2 ports 1.2 (\times) 1.0</td>
</tr>
<tr>
<td></td>
<td>cut (b)</td>
<td>2 ports 0.7 (\times) 1.0</td>
</tr>
<tr>
<td>Advanced source</td>
<td>cut (a)</td>
<td>1 port 1.2 (\times) 1.0</td>
</tr>
<tr>
<td></td>
<td>cut (b)</td>
<td>1 port 0.7 (\times) 1.0</td>
</tr>
</tbody>
</table>
EU DEMO: Maintenance strategy

Accessibility

Beam source and beam line components:
- Neutralizer and RID blocks can be independently removed from above.
- Beam source block and NEG pumps can be independently removed from the right side.

Duct components:
- Duct heat dump #2 can be rotated and extracted from the radial port.
- After this, duct heat dump #1 can be removed by sliding along its rail.
Needs for NBI activities towards DEMO

More ion source test facilities to
- study Cs consumption
- find Cs alternatives
- improve source performance (electrons!)
- ...

More facilities for neutralizer concepts
- energy recovery
- laser neutralizer
- ...

... taking RAMI issues into account

... neutron-irradiation issues (grids, ...)

Accelerator studies to
- address (reduce) back streaming ions
- optimize grid system (stripping, transm.)
- address voltage holding

Engineering tasks: power loads of
- co-extracted electrons
- backstreaming ions
- residual ion dump