Gyrokinetic simulations for tokamaks and stellarators

R. Kleiber¹, M. Borchardt¹, M. Cole¹, T. Fehér², R. Hatzky², A. Könies¹, A. Mishchenko¹, J. Riemann¹

¹Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany

²Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

February 26, 2015

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Interest in global (full-volume) gyrokinetic particle-in-cell simulations for stellarators.

Two main areas of activity:
- Microinstabilities and turbulence
- MHD modes and their interaction with fast particles

Even linear electrostatic simulations for stellarators can become difficult due to high necessary resolution.

For electromagnetic perturbations already linear simulations in a tokamak can become very difficult (especially in the MHD limit, small $k_\perp \rho$)

⇒ necessity of algorithm development

MHD modes provide an excellent testing ground for codes since a very high quality of numerics is required.
Overview

1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- Electron fluid model
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
Fully gyrokinetic simulations are very time-consuming and difficult. Develop simplified models: Sacrifice physics for gain in speed.

⇒ EUTERPE, FLU-EUTERPE, CKA-EUTERPE
1 Theory
 - Electromagnetic gyrokinetic equations
 - MHD hybrid model
 - Electron fluid hybrid model

2 Results
 - MHD hybrid model
 - Electron fluid model
 - Fully electromagnetic gyrokinetics
 - Electrostatic ITG in stellarators
All equations are derived from a Lagrangian via a variational principle in \(\{ \vec{R}, p_\parallel, \mu, \alpha \} \) coordinates (consistency and conserved quantities)

\[
L = \sum_{\text{species}} \int \left\{ f \left[(q\vec{A} + p_\parallel \vec{b}) \cdot \dot{\vec{R}} + \frac{m}{q} \mu \dot{\alpha} - \frac{p_\parallel^2}{2m} - \mu B + q\left\langle \frac{p_\parallel}{m} A_\parallel - \Phi \right\rangle \right] + f_0 \left[-\frac{q^2}{2m} \left\langle A_\parallel \right\rangle^2 + \frac{m}{2B^2} (\nabla \perp \Phi)^2 \right] \right\} \, dV \, dW - \frac{1}{2\mu_0} \int (\nabla \perp A_\parallel)^2 \, dV
\]

- \(\delta B_\parallel \) neglected
- \(\langle \cdot \rangle \): gyro-averaging operator
- \(dW = B_\parallel^* \, dp_\parallel \, d\mu \, d\alpha, \, dV = \sqrt{g} \, ds \, d\vartheta \, d\varphi, \, B_\parallel^* = B + \frac{1}{q} p_\parallel \vec{b} \cdot \nabla \times \vec{b} \)

adiabatic electron model: \(\frac{m}{2B^2} (\nabla \perp \Phi)^2 \implies \frac{e^2}{2k_B T_{e0}} (\Phi - \bar{\Phi})^2 \)

neglect \(q\langle \Phi \rangle \) for electrons
Cancellation problem

Electromagnetic simulations are hampered by the cancellation problem.

- Moment of $p \parallel$ does not give a physical current.
- Ampère’s law in $p \parallel$ formulation (d_c: collisionless skin depth)

\[-\frac{1}{\beta} \nabla^2 A \parallel + \frac{1}{d_c^2} A \parallel = j \parallel_i + j \parallel_e\]

- $\frac{1}{d_c^2} A \parallel \gg \frac{1}{\beta} \nabla^2 A \parallel$ (especially for MHD modes, since $k \perp \rho_i \approx 0$)
- $j \parallel_e$ contains adiabatic part $j \parallel_{e,ad} = \int e v \parallel \left[\frac{e}{T} f_0 v \parallel A \parallel \right] \, d^3v$
- Numerical cancellation of the two large terms $\frac{1}{d_c^2} A \parallel$ and $j \parallel_{e,ad}$
- Different numerical representations: matrix \iff particles

Cancellation problem mitigated by adjustable control variate method.

[Hatzky et al. 2007]

- Iterative method for determining a control variate
- Allows strong reduction in the number of necessary markers

Nevertheless, simulations require a very long time (small time step) or are still not feasible for certain parameters.
Equations of motion in v_\parallel formulation (slab version for simplicity)

$$
\begin{align*}
\dot{R} &= v_\parallel \vec{b} + \frac{1}{B} \vec{b} \times \nabla \left[\phi - v_\parallel A_\parallel \right] \\
\dot{v}_\parallel &= -\frac{q}{m} \left[\nabla_\parallel \phi + \frac{\partial A_\parallel}{\partial t} \right]
\end{align*}
$$

Use splitting $A_\parallel = A_\parallel^s + A_\parallel^h$, introduce $u_\parallel = v_\parallel + \frac{q}{m} A_\parallel^h$ and simplify equations by using the resulting freedom to postulate

$$
\frac{\partial A_\parallel^s}{\partial t} + \nabla_\parallel \phi = 0
$$

Field equations

$$
\begin{align*}
\frac{\partial A_\parallel^s}{\partial t} + \nabla_\parallel \phi &= 0 \\
- \frac{1}{\beta} \nabla_\perp^2 (A_\parallel^h + A_\parallel^s) + SA_\parallel^h &= j
\end{align*}
$$
Pullback scheme II

Kinetic equation:
\[\frac{\partial \delta f}{\partial t} = -\dot{R} \cdot \nabla f_0 - \frac{q}{m} u || \nabla || A^h || \frac{\partial f_0}{\partial u ||} \]

second term can be reduced by keeping \(A^h || \) small \(\Rightarrow \) idea of restarting

1. Start with \(A^h || = 0 \), i.e. \(u || = v || \)

Scheme allows for much larger time steps and enables simulations in parameter regimes not accessible before.
Kinetic equation:
\[
\frac{\partial \delta f}{\partial t} = -\dot{R} \cdot \nabla f_0 - \frac{q}{m} u_\parallel \nabla_\parallel A^h_\parallel \frac{\partial f_0}{\partial u_\parallel}
\]

second term can be reduced by keeping \(A^h_\parallel \) small ⇒ idea of restarting

1. Start with \(A^h_\parallel = 0 \), i.e. \(u_\parallel = v_\parallel \)
2. Integrate system in \(u_\parallel \)-space: \(A^h_\parallel \) develops, leading to \(u_\parallel \neq v_\parallel \)

Scheme allows for much larger time steps and enables simulations in parameter regimes not accessible before.
Kinetic equation:
\[
\frac{\partial \delta f}{\partial t} = -\dot{R} \cdot \nabla f_0 - \frac{q}{m} u_\parallel \nabla_\parallel A^h_\parallel \frac{\partial f_0}{\partial u_\parallel}
\]

second term can be reduced by keeping \(A^h_\parallel\) small \(\Rightarrow\) idea of restarting

1. Start with \(A^h_\parallel = 0\), i.e. \(u_\parallel = v_\parallel\)
2. Integrate system in \(u_\parallel\)-space: \(A^h_\parallel\) develops, leading to \(u_\parallel \neq v_\parallel\)
3. Transform from \(u_\parallel\)-space to \(v_\parallel\)-space (use pullback)

\[
\delta f(v_\parallel) = \delta f(u_\parallel) + \frac{q}{m} A^h_\parallel \frac{\partial f_0}{\partial u_\parallel}, \quad v_\parallel = u_\parallel - \frac{q}{m} A^h_\parallel
\]

Scheme allows for much larger time steps and enables simulations in parameter regimes not accessible before.
Kinetic equation:
\[
\frac{\partial \delta f}{\partial t} = -\hat{R} \cdot \nabla f_0 - \frac{q}{m} u\| \nabla A_h^h \frac{\partial f_0}{\partial u}\|
\]
second term can be reduced by keeping A_h^h small \Rightarrow idea of restarting

1. Start with $A_h^h = 0$, i.e. $u\| = v\|

2. Integrate system in $u\|$-space: A_h^h develops, leading to $u\| \neq v\|

3. Transform from $u\|$-space to $v\|$-space (use pullback)

\[
\delta f(v\|) = \delta f(u\|) + \frac{q}{m} A_h^h \frac{\partial f_0}{\partial u\|}, \quad v\| = u\| - \frac{q}{m} A_h^h
\]

4. Keep the full solution by setting A_s^s to $A_s^s + A_h^h$ and restart

Scheme allows for much larger time steps and enables simulations in parameter regimes not accessible before.
1 Theory
 • Electromagnetic gyrokinetic equations
 • MHD hybrid model
 • Electron fluid hybrid model

2 Results
 • MHD hybrid model
 • Electron fluid model
 • Fully electromagnetic gyrokinetics
 • Electrostatic ITG in stellarators
- Use simplified way of describing the interaction of Alfvén modes with fast particles.
- CKA code (A. Könies) solves the linearised reduced MHD eigenvalue problem.
- Resulting mode structure and frequency used as a fixed input for a particle simulation ⇒ linear
- Allow trajectories to react ⇒ nonlinear
- Perturbative scheme

\(\Phi, A'' \ \frac{\omega}{\omega} \rightarrow \text{EUTERPE} \)

CKA

MHD equation eigenvalue problem

EUTERPE

particle motion gyrokinetic equation
MHD hybrid model II

- Time derivative of quasineutrality equation

\[
\frac{\partial}{\partial t} \nabla \cdot \left[\frac{M_n}{B^2} \nabla \phi \right] = -\nabla \cdot \left[-\vec{b} \frac{1}{\mu_0} \nabla^2 A_{||} + j^{(0)}_{||} \left(\frac{\vec{b} \times \vec{k}}{B} A_{||} - \frac{\vec{b} \times \nabla A_{||}}{B} \right) \right. \\
\left. + p_{\text{bulk}}^{(1)} \left(\frac{\vec{b} \times \vec{k}}{B} + \frac{\vec{b} \times \nabla B}{B^2} \right) + p_{||,\text{fast}}^{(1)} \frac{\vec{b} \times \vec{k}}{B} + p_{\perp,\text{fast}}^{(1)} \frac{\vec{b} \times \nabla B}{B^2} \right]
\]

CKA part, EUTERPE part

- Simple closure for bulk pressure (neglect compressibility and anisotropy)

\[
\frac{\partial p_{\text{bulk}}^{(1)}}{\partial t} = -\frac{\vec{b} \times \nabla \phi}{B} \cdot \nabla p_{\text{bulk}}^{(0)}
\]

- MHD closure (vanishing $E_{||}$)

\[
\frac{\partial A_{||}}{\partial t} = -\vec{b} \cdot \nabla \phi
\]
Alfvén modes are stable eigenmodes with frequency ω_0

\[
\phi(\vec{r}, t) = \phi_0(\vec{r}) e^{i\omega_0 t}
\]
\[
A_{\parallel}(\vec{r}, t) = A_{\parallel 0}(\vec{r}) e^{i\omega_0 t}
\]
\[
p^{(1)}(\vec{r}, t) = p_0(\vec{r}) e^{i\omega_0 t}
\]

Allow for complex time dependent amplitude

\[
\phi(\vec{r}, t) = \hat{\phi}(t) \phi_0(\vec{r}) e^{i\omega_0 t}
\]
\[
A_{\parallel}(\vec{r}, t) = \hat{A}_{\parallel}(t) A_{\parallel 0}(\vec{r}) e^{i\omega_0 t}
\]
\[
p^{(1)}(\vec{r}, t) = \hat{p}(t) p_0(\vec{r}) e^{i\omega_0 t}
\]
\[
\frac{\partial \hat{\phi}}{\partial t} = i\omega_0 (\hat{A}_\parallel - \hat{\phi}) + 2(\gamma - \gamma_d)\hat{\phi} \\
\frac{\partial \hat{A}_\parallel}{\partial t} = -i\omega_0 (\hat{A}_\parallel - \hat{\phi})
\]

\[
\gamma = \frac{T}{2W}
\]

\gamma_d: ad-hoc damping

Wave-particle energy transfer:

\[
T = -\int dW dV f^{(1)}_{\text{fast}} \left[\frac{1}{B} \vec{b} \times (m v^2_\parallel \vec{k} + \mu \nabla B) \cdot \nabla \phi^* \right]
\]

Wave energy:

\[
W = \int dV \frac{M n}{B^2} |\nabla_\perp \phi|^2
\]

Linear model: Growth rate of the mode given by \(\gamma\)

Nonlinear model: Use Re(\(\phi\)), Re(\(A_\parallel\)) for fast particle trajectories
1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- Electron fluid model
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
Electron fluid model [Cole et al. 2014]

- Linearised electron continuity equation (v_\parallel formulation)

\[
\frac{\partial n_e}{\partial t} + n_0 \vec{B} \cdot \nabla \frac{u_e}{B} + B \vec{v}_{E \times B} \cdot \nabla \frac{n_0}{B} + (\nabla \times A_\parallel \vec{b}) \cdot \nabla \frac{n_0 u_e}{B} + n_0 (2\vec{v}_* - \vec{v}_{E \times B}) \cdot \nabla \frac{B}{B} + \frac{\nabla \times B}{B^2} \cdot \left(-\frac{1}{e} \nabla p_e + n_0 \nabla \phi \right) = 0
\]

with \(\vec{v}_* := \frac{\vec{b} \times \nabla p_e}{en_0 B} \)

- Ampère’s law and quasineutrality

\[
u_e = \frac{1}{en_0} \left(j_{i\parallel} + \frac{1}{\mu_0} \nabla^2 A_\parallel \right)
- \nabla \cdot \left(\frac{m_i n_0}{e B^2} \nabla \phi \right) = n_i - n_e
\]

- MHD ($E_\parallel = 0$) and pressure closure

\[
\frac{\partial A_\parallel}{\partial t} = -\vec{b} \cdot \nabla \phi \quad \quad \frac{\partial p_e}{\partial t} = -\vec{v}_{E \times B} \cdot \nabla p_e
\]

More physics can be included by improving the closures.
Global gyrokinetic code EUTERPE

- δf particle-in-cell code
- Global simulation domain: full-volume
- 3D stellarator equilibria (from VMEC equilibrium code)
- Multiple kinetic species (ions, electrons, fast ions/impurities)
- Electrostatic/electromagnetic
- Linear/nonlinear
- Pitch-angle collision operator (⇒ neoclassics)

⇒ Code platform for implementation of different models
 (GYGLES: basically a reduced, linear, axisymmetric version of EUTERPE)
1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- Electron fluid model
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
W7-X equilibrium with \(\beta \approx 3\% \)

Flat bulk plasma profiles
\[n_{\text{bulk}} = 10^{20} \text{ m}^{-3} \]

TAE mode found (CKA)
Destabilise TAE mode by fast particle interaction:
Maxwellian fast particles
\[n_{\text{fast}} \] profile fixed with
\[n_{\text{fast},0} = 10^{17} \text{ m}^{-3} \]

FLR effects important

Reaction on external radial electric field
\[(\vec{E}_0 = E_s \nabla s, \ E_s = \text{const.}) \]

\[M_E = \frac{1}{v_{th}} \langle |\vec{E}_0 \times \vec{B}| \rangle \]

[\text{Mishchenko et al. 2014}]
Fast ions from ICRH

Very simple model for ICRH: anisotropic Maxwellian power deposition localised in space

Less-pronounced finite orbit-width effects

Strong influence of anisotropy on growth rate (more/less parallel temperature)
Nonlinear CKA-EUTERPE: amplitude development

- ITPA benchmark case: circular $A = 10$ tokamak, $(m, n) = (10/11, -6)$ TAE
- Without artificial damping mode amplitude does not saturate.
- Feature robust with respect to time step and particle number: no numerical artefact
- Artificial damping necessary ($\gamma_d \approx 2.5 \cdot 10^3 \, \text{s}^{-1}$) in order to reach saturation (damping of same order also used by other codes).
For small growth-rates theory (Berk-Breizmann model) predicts relationship between saturation amplitude and growth rate: \(\delta B / B \sim \gamma_{\text{eff}}^2 \)

Scaling confirmed by other codes

Symmetric frequency chirping observed.
1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- **Electron fluid model**
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
Internal kink in a screw pinch. Scan over position of $q = 1$ surface.

ITPA benchmark: **EUTERPE, FLU-EUTERPE and CKA-EUTERPE**
Internal tokamak kink mode

- Finite ∇T used to destabilise the mode.
- In fluid limit (no gyrokinetic ions), direct comparison possible with MHD code CKA:
 $\gamma_{FLU} = 1.29 \times 10^6 \text{s}^{-1}$
 $\gamma_{CKA} = 1.27 \times 10^6 \text{s}^{-1}$
- Strong stabilisation with JET/ITER-like aspect ratio and elongation.
- Further stabilisation with inclusion of bulk ion gyrokinetic effects.

Resistive layer physics lost but tokamak simulations become practical.

[Cole et al. 2014]
Fast particle effects: Linear fishbone

- Maxwellian fast species (D), $T_{\text{fast}} = 300$ keV
- Initial stabilisation of the mode (perturbative effect) overcome by unstable branch.
- Frequency jump with onset of fast particle destabilisation.
- Non-perturbative mode structure for larger fast particle density.

![Graph showing growth rate and frequency vs. fast particle density](image-url)
1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- Electron fluid model
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
For ITPA case TAE had no continuum interaction.

- Use steeper q-profile \Rightarrow continuum interaction.

- MHD mode structure strongly modified by interaction with KAW. [Cole et al. 2015]

- Change of mode structure not captured by CKA-EUTERPE.

- FLU-EUTERPE: follows change in mode structure but break-down of fluid closure?
Pull-back scheme: simulations for stellarator

Electromagnetic ITG for LHD-like configuration
\((\beta_{eq} = 1.5\%, \beta_e = 0.85\%) \)

Standard \(\delta f \) scheme:
- Numerical instability quickly develops
- Wrong mode structure

New scheme:
- Simulation stays stable
- Clean mode structure

[Mishchenko et al. 2014]
1 Theory
- Electromagnetic gyrokinetic equations
- MHD hybrid model
- Electron fluid hybrid model

2 Results
- MHD hybrid model
- Electron fluid model
- Fully electromagnetic gyrokinetics
- Electrostatic ITG in stellarators
Simplified profiles for L_T-L_n-scans

For global simulations profiles are a critical issue: One gains a functional degree of freedom but loses flexibility to produce parameter sequences.

- **Simplified profiles:**
 - piece-wise linear
 - \(\frac{d \ln T_{i,e}}{ds} \) and \(\frac{d \ln n_{i,e}}{ds} \)
 - \(s = \frac{\Psi_{\text{tor}}(r)}{\Psi_{\text{tor}}(0)} \).

- **Further simplification:**
 - keep equilibrium configuration fixed and change parameters \((L_T, L_n) \) only in the simulations.
Quasi-realistic profiles for $L_T - L_n$-scans

Quasi-realistic: simplified but derived from equilibrium
(assuming finite residual pressure δp_0)

\[
\frac{p}{p_0} = 1 - 2s + s^2 + \frac{\delta p_0}{p_0}
\]

\[
\frac{T_{i,e}}{T_0} = \left(\frac{1}{2} \frac{p}{p_0} \right)^{1-\chi}, \quad (T_e = T_i)
\]

\[
\frac{n_{i,e}}{n_0} = \left(\frac{1}{2} \frac{p}{p_0} \right)^\chi, \quad (n_e = n_i)
\]

\[
\eta_i = 1 - \chi \div \chi = \text{const.}
\]

$\Rightarrow \eta_i$-scan implies $L_{T,n}$-scan

Advantage: not necessary to recalculate equilibrium for new parameter settings
Clear onset of linear ITG instability for $\eta_i \geq 1$ observed.

Similar growth rates for W7-X and LHD.
W7-X: ITG mode pattern

W7-X ($\beta = 2\%, \ T_\ast = 1 \text{ keV}$)

Electrostatic potential (absolute values) normalized to maximum $s = 0.5$

$a/L_T = 1.41, \ a/L_n = 0.0, \ (m_0, n_0) = (210, -190)$

- ITG mode resides in region of unfavourable curvature.
- High-shear region or 'helical edge' avoided.
LHD (β = 1.5%, \(T_\ast = 1\) keV, \(R_0 = 3.75\) m)

electrostatic potential (absolute values) normalized to maximum at \(s = \text{const.}\).

\[\eta_i = 2, \ s = 0.61, \ \gamma = 0.12 \frac{v_T}{a} \]
\[\eta_i = 1, \ s = 0.75, \ \gamma = 0.02 \frac{v_T}{a} \]

- Helical edge less pronounced than in W7-X
\(L_T - L_n \)-scan for simplified profiles

\[\text{LHD} \ (\beta = 1.5\%, \ T_* = 1 \text{keV}) \]
Quasi-realistic profile scan yields 'configuration characteristic'.

Consistent profiles are a unique challenge of global simulations.

Reasonable assumptions about residual pressure are crucial.
Radial electric field effects

W7-X ($\beta = 2\%, \ T_* = 1\ keV$)

Two different radial electric field models used (variation of α):

- **Physical**: $E_s = \alpha \frac{p_i'}{q_i n_i} \Rightarrow$ model A
- **Simple**: $E_s = -\alpha \Rightarrow$ model B
- Asymmetric damping effect
Conclusions

EUTERPE: global (full-volume) gyrokinetic particle-in-cell code for stellarators.

Hierarchy of models implemented:
MHD hybrid, electron fluid, fully gyrokinetic.

New numerical schemes allow faster and more robust electromagnetic simulations.

Examples:
- Fast particle interaction with TAE and internal kink mode.
- Electrostatic ITG with (quasi-)realistic profiles for stellarators.

Progress, especially for electromagnetic simulations, has been made but further testing is necessary.
International benchmark case for Alfvén wave fast-particle interaction.

- Circular tokamak \(A = 10, R = 10 \text{ m}, B = 3 \text{ T}, \) bulk ions: D

- \(n_e = 2 \cdot 10^{19} \text{ m}^{-3}, \)
 \(T_i = T_e = 1 \text{ keV} \)

- \(q = 1.71 + 0.16s \)

- \(T_{\text{fast}} = 400 \text{ keV (Maxwellian)} \)

- \(n_{\text{fast}} = n_0 \exp \left(-\frac{\Delta n}{L_n} \tanh \frac{s - s_0}{\Delta n} \right) \)
 with \(n_0 = 0.75 \cdot 10^{17} \text{ m}^{-3}, \)
 \(\Delta n = 0.2, L_n = 0.3, s_0 = 0.5 \)
- β_e-effect on growth rate relatively weak.

- In contrast to tokamak no AITG/KBM branch found in β_e scan.

- Pullback scheme allows much faster (one day) simulations than adaptive control variate scheme.

\Rightarrow More careful tests necessary to validate schemes.