Qualification of the system code AC2 (submodule ATHLET) for the safety assessment of passive residual heat removal systems

Daniel von der Cron, Sebastian Buchholz, Andreas Schaffrath
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH
Daniel.vonderCron@grs.de

International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water Cooled Nuclear Power Plants
Vienna
6 – 9 June 2017
Outline

- AC² and ATHLET description
- Passive Residual Heat Removal Systems: The KERENA Emergency Condenser
- NOKO facility description
- ATHLET simulations of the NOKO facility: Recent and current activities
- Conclusion & Outlook
Thermal-hydraulic link in the GRS nuclear simulation chain → presentation „The Nuclear Simulation Chain of GRS“

Covers operational states, incidents, accidents, severe accidents

Comprises the GRS modules:

- **ATHLET** → primary and secondary system; no core degradation
- **ATHLET-CD** → extension for core degradation
- **COCOSYS** → containment phenomena
- **ATLAS** → post-processing tool for all modules
ATHLET

- Analysis of the Thermal-hydraulics of LEaks and Transients
- System code for comprehensive and realistic analyses of the thermal-hydraulic behavior of the coolant system of a nuclear power plant
- Substantial validation basis (LOCAs, transients, …)
- Original 1D code (2D/3D conservation equations available & under development)
- Finite volume approach on staggered grid
- Coupling with CFD and neutronics codes possible
- Focus is on the simulation of physical phenomena, not of special components (black boxes)
Passive Residual Heat Removal (PRHR) Systems

- Passive systems (cf. IAEA-TECDOC-1624):
 - Can contribute to simplification and potentially improve economics
 - Increase the reliability of the performance of essential safety functions

- PRHR: Removal of residual heat even in the case plant power is lost

- Examples:
 - AP600/1000: PRHR-HX
 - VVER-1200 (AES-2006): Steam Generator PHRS
 - KERENA: Emergency Condenser (EC)

- Challenge for ATHLET:
 - Operation usually starts on its own (i.e. no activation signal)
 - Driving forces of operation may vary during the course of a transient dependent on the boundary conditions
 - Conditions may be beyond the range of validity of implemented correlations
The KERENA Emergency Condenser (EC)

- **SWR600/1000 (Siemens AG):**
 - 4 ECs
 - Maximum heat removal capacity: 63 MW per EC

- **KERENA (AREVA) as successor of SWR600/1000:**
 - EC principle is the same, details differ (e.g. 61 condenser tubes instead of 104)

Graphic taken from Krepper /KRE 07/
The KERENA Emergency Condenser (EC)

- Characteristics & phenomena:
 - Slightly inclined horizontal pipes
 - Condensation inside the tubes (depending on local flow pattern)
 - Convective boiling outside
 - Free convection in water pool

- Test facilities simulated with ATHLET:
 - NOKO (FZ Jülich; single component experiments)
 - TOPFLOW (HZDR; single component experiments)
 - INKA (AREVA; integral tests)

Graphic taken from Schaffrath /SAN 16/
The NOKO test facility

- Thermo hydraulic test rig, scale 1:13 resp. 1:26 (original size condenser tubes; scaled by the number of tubes used)
- Max. power of electrical heater: 4 MW
- Experiments carried out under quasistationary conditions

Nodalization scheme in ATHLET (condenser vessel only sketched)
ATHLET 3.0 simulations of the NOKO facility

![Graph showing EC power vs. (T_{Sat,prim} - T_{Sat,sec}) in K](image)

- EC power [MW]
- (T_{Sat,prim} - T_{Sat,sec}) [K]

Experiment
Code modifications ATHLET 3.0 → ATHLET 3.1

- Secondary side (subcooled/saturated nucleate boiling):
 - Convective boiling
 - Pool boiling
 - Forced convection
ATHLET 3.1 simulations of the NOKO facility

![Graph showing the comparison between experimental data and ATHLET 3.0 simulations for EC power (MW) versus \((T_{\text{Sat,prim}} - T_{\text{Sat,sec}}) [K]\).]
Current work: Joint project PANAS

- General information:
 - Funded by BMBF
 - Consortium partners: TUD-WKET, THD, AREVA GmbH, HZDR
 - GRS is a subcontractor of TUD-WKET
 - Project period: 07/2015 – 12/2018

- Project objectives:
 - Investigation of passive decay heat removal systems
 - Experimental analyses
 - Modeling and validation for system codes and CFD codes

- GRS subtask:
 - Validation and – if necessary – improvement of condensation and evaporation heat transfer models for ATHLET
PANAS: Data used for validation

- Data used for validation from COSMEA experiments performed at HZDR

- Single effect test stand
- Focus on flow patterns and condensation processes
- Secondary side cooled by convection
- Instrumentation: i.a. thermocouples and X-ray tomography system

Graphic taken from Szijártó /SZI 15/
PANAS: ATHLET modifications made so far

- Implementation of condensation heat transfer model of Thome et al.

Flow pattern map

Example (R-12 at 40°C) acc. to El Hajal et al. /HAJ 03/

Heat transfer

- rather mechanistic modelling
- \(htc_{ges} = f (htc_{conv}, htc_{cond}, \theta_{strat}) \)
PANAS: ATHLET modifications made so far

- Implementation of condensation heat transfer model KONWAR /SCH 96/

Flow pattern map

Heat transfer

- Combination of (semi-)empirical models for different flow regimes

\[
\frac{j_B^*}{\bar{m}} = \frac{\dot{x} \cdot \bar{m}}{A [g \cdot d \cdot \rho_v (\rho_l - \rho_v)]^{0.5}}
\]

International Conference on Topical Issues in Nuclear Installation Safety (CN-251), Vienna (Austria), 6–9 June 2017
ATHLET 3.1 + THOME simulations of the NOKO facility

International Conference on Topical Issues in Nuclear Installation Safety (CN-251), Vienna (Austria), 6–9 June 2017
ATHLET 3.1 + KONWAR simulations of the NOKO facility

EC power [MW] vs. \((T_{\text{Sat,prim}} - T_{\text{Sat,sec}}) [K]\)

- Experiment
- ATHLET 3.0
- ATHLET 3.1
- THOME
- KONWAR

International Conference on Topical Issues in Nuclear Installation Safety (CN-251), Vienna (Austria), 6–9 June 2017
Conclusions & Outlook

- Conclusion
 - ATHLET 3.0 → 3.1: significant improvement of heat transfer
 - Implementation of Thome et al. and KONWAR: smaller improvements

- Next steps
 - Validation of implemented models by simulation of COSMEA experiments
 - If it proves necessary: modification of heat transfer correlations at tube bundle shell side

- Moreover: Joint project EASY (03/2015 – 02/2018; focused on integral tests at INKA)
Acknowledgements

The project PANAS (reference number 02NUK041), where GRS is a subcontractor of Technische Universität Dresden, Chair of Hydrogen and Nuclear Energy, is funded by the German Federal Ministry of Education and Research (BMBF).

The code modifications from ATHLET version 3.0 to version 3.1 were funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) within the project RS1507.
References

- **/KRE 07/** E. Krepper. Experimental and numerical investigations of an emergency condenser. 4th NC IAEA Research Coordination Meeting. Vienna, Sept. 10th-13th 2007

- **/SAN 96/** A. Schaffrath. Experimentelle und analytische Untersuchungen zur Wirksamkeit des Notkondensators des SWR600/1000, Jül-3326, Forschungszentrum Jülich, 1996

