Development of the Methodologies for Evaluating Severe Accident Management

Lim Joong Taek
Department of human resource development team

December 13, 2016
Contents

- Introduction
- Theoretical Background
- Methodology
- Preliminary Results
- Concluding Remarks & Future Work
Introduction
Nuclear Power Generation in Korea

- **25 Power Reactors Operation**
 - 21 PWRs and 4 PHWRs
 - Installed capacity of 23.1 GWe
 - 30 ~ 35% share of electricity supply

- **3 PWRs (APR1400) under Construction**

- **4 PWRs (APR1400) under Planning**

- **The Most Economical, Reliable & Semi-domestic Electricity Source in Korea**
Domestic severe accident legislation

- **Amendment of Nuclear safety act**
 - **Purpose**
 - Severe accident management performed by administrative order with weak legal basis
 - Clarification of responsibility for accident management and regulatory requirements in Nuclear Safety Act
 - Even in case of a severe accident, to minimize the release of radioactive materials and to restore the NPP to a safe condition through accident management program
 - To introduce accident management program as a licensing document
 - **Application**
 - New NPP: AMP is required to obtain operating license
 - NPP in operation: AMP is required to submit within 3 years (June 23, 2019)
The new nuclear safety act

Purpose

- Evaluate the effectiveness of the severe accident management strategies using probabilistic manner
- Combine PSA, AMP, and severe accident research
Theoretical Background
Background

- **Integrated ROAAM**
 - ROAAM + level 2 PSA
 - PSA is a tool for determining relevant sequences that must be mitigated in the SAM approach
 - ROAAM increases the credibility and transparency of the level 2 PSA study providing a framework for modeling and quantifying complex physical phenomena.
 - Application
 - Westinghouse AP600 : passive LWR design

- **SAMEM**
 - Performed the development and demonstration of integrated models for the evaluation of severe accident management strategies using PSA and ROAAM

- The development and demonstration of integrated models for the evaluation of severe accident management strategies-SAMEM : M.L. Ang(2001)
Methodology
Korean Level 2 PSA Process

Level 1 PSA

<table>
<thead>
<tr>
<th>Initiating Event</th>
<th>Core Damage Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large LOCA</td>
<td></td>
</tr>
<tr>
<td>Medium LOCA</td>
<td></td>
</tr>
<tr>
<td>Small LOCA</td>
<td></td>
</tr>
<tr>
<td>SGTR</td>
<td></td>
</tr>
<tr>
<td>ISLOCA</td>
<td></td>
</tr>
<tr>
<td>RVR</td>
<td></td>
</tr>
<tr>
<td>LSSB-IN/OUT</td>
<td></td>
</tr>
<tr>
<td>LOFW</td>
<td></td>
</tr>
<tr>
<td>LOCV</td>
<td></td>
</tr>
<tr>
<td>LOIA</td>
<td></td>
</tr>
<tr>
<td>PLOCCW</td>
<td></td>
</tr>
<tr>
<td>TLOCCW</td>
<td></td>
</tr>
<tr>
<td>LOKV(4.16kV)</td>
<td></td>
</tr>
<tr>
<td>LODC(125V)</td>
<td></td>
</tr>
<tr>
<td>LOOP</td>
<td></td>
</tr>
<tr>
<td>SBO</td>
<td></td>
</tr>
<tr>
<td>GTRN</td>
<td></td>
</tr>
<tr>
<td>ATWS</td>
<td>EVENT Tree</td>
</tr>
</tbody>
</table>

Level 2 PSA

<table>
<thead>
<tr>
<th>Containment Failure Mitigation</th>
<th>Severe Accident Phenomena</th>
<th>Containment Failure Mode</th>
<th>Source Term Category</th>
<th>Fission Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS Containment Isolation before Core Damage</td>
<td>Molten Core-Concrete Interaction</td>
<td>BYPASS</td>
<td>STC1 (SGTR)</td>
<td>Noble Gas</td>
</tr>
<tr>
<td>SDR Sudden Depressurization for mitigation</td>
<td>In-Vessel Steam Explosion</td>
<td>NOTISO</td>
<td>STC2 (ISLOCA)</td>
<td>I</td>
</tr>
<tr>
<td>RACV Power Recovery before Reactor Vessel Failure</td>
<td>Ex-Vessel Steam Explosion</td>
<td>NOCF</td>
<td>STC3 (NOTISOCS)</td>
<td>Cs</td>
</tr>
<tr>
<td>RACC Power Recovery before Containment Failure</td>
<td>Hydrogen Generation & Reaction</td>
<td>BMT</td>
<td>STC4 (NOTISONOCS)</td>
<td>Te</td>
</tr>
<tr>
<td>INJ Coolant Injection to Reactor Vessel</td>
<td>High Pressure Melt Ejection</td>
<td>ECF</td>
<td>STC5 (CFBRB)</td>
<td>Sb</td>
</tr>
<tr>
<td>CFS Reactor Cavity Flooding</td>
<td>Direct Containment Heating</td>
<td>LCF</td>
<td>STC6 (MELTSTOP)</td>
<td>Sr</td>
</tr>
<tr>
<td>HMSI Hydrogen Control System Operation</td>
<td></td>
<td></td>
<td>STC7 (NOCF)</td>
<td>Ru</td>
</tr>
<tr>
<td>CHR Containment Heat Removal</td>
<td></td>
<td></td>
<td>STC8 (BMT)</td>
<td>Ba</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC9 (ECF1)</td>
<td>La</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC10 (ECF2)</td>
<td>Ce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC11 (ECF3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC12 (ECF4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC13 (LCF1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC14 (LCF2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC15 (LCF3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC16 (LCF4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STC17 (LCF5)</td>
<td></td>
</tr>
</tbody>
</table>

Fission Product Release Frequency

Core Damage Frequency

Plant Damage State Frequency

Containment Failure Probability
Database the level 2 PSA information

- **Transfer to database**
 - Accident progress
 - Core Damage Prevention function
 - Severe accident mitigation function
 - PDS group of Accident Sequences
 - Screening PDS ET
 - Containment failure sequence
 - Frequency: Below 10^{-14} /RY
 - Success/failure of the functions
 - Success: (AAC)
 - Failure: **AAC**

Plant Damage State Event Tree
Database the level 2 PSA information

Source term release fraction

• The mass of the initial fission product in a reactor core and the mass fraction of the fission product released into the environment

• Each PDS has its own 17 STC quantification values and the probabilities by containment failure modes

• 10 fission products
 – Noble gas, I, Cs, Te, Sb, Sr, Ru, Ba, La, Ce

<table>
<thead>
<tr>
<th>Source Term Category Release fraction</th>
<th>Noble Gas</th>
<th>I</th>
<th>Cs</th>
<th>Te</th>
<th>Sr</th>
<th>Ru</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>3.10</td>
<td>1.39E-01</td>
<td>1.04E-02</td>
<td>1.12E-02</td>
<td>7.99E-02</td>
<td>7.09E-02</td>
<td>7.30E-02</td>
<td>7.72E-02</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>3.10</td>
<td>1.05E-01</td>
<td>7.09E-02</td>
<td>6.77E-03</td>
<td>1.73E-02</td>
<td>1.73E-02</td>
<td>1.73E-02</td>
<td>1.73E-02</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
<tr>
<td>17</td>
<td>0.0</td>
<td>3.10</td>
<td>1.04E-01</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
<td>1.04E-02</td>
</tr>
</tbody>
</table>
Database the level 2 PSA information

<table>
<thead>
<tr>
<th>Initiating Event</th>
<th>Core Damage Prevention Functions</th>
<th>Severe Accident Mitigation Function</th>
<th>Source Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiating Event

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Damage Prevention Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Severe Accident Mitigation Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source Term

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ No.</th>
<th>SBO</th>
<th>AAC</th>
<th>APW-T</th>
<th>CCDP</th>
<th>CDF</th>
<th>FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SBO</td>
<td>(AAC)</td>
<td></td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SBO</td>
<td>(AAC)</td>
<td></td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SBO</td>
<td>(AAC)</td>
<td></td>
<td>OK</td>
<td>(CHR)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SBO</td>
<td>(AAC)</td>
<td>(CHR)</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SBO</td>
<td>(AAC)</td>
<td></td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SBO</td>
<td>(AAC)</td>
<td></td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRBO</th>
<th>CLASS</th>
<th>CCFP</th>
<th>CFF</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary application

• **APR1400**
 - Thermal power: 4,000 MWth
 - Hot-leg temperature: 615 °F (323.9 °C)
 - Severe accident respond facilities
 - Cavity flooding system
 - Passive auto-catalytic recombiner
 - ECSBS

• **Selection of initiating event**
 - Based on CDF contribution
Risk information to display

- **Severe Accident Prevention / Mitigation**
 - Core Damage Frequency
 - Conditional Containment Failure Probability

\[
CFF = \text{FREQ} \times CFP
\]

\[
CCFP = \frac{CFF}{CDF} = \frac{\text{FREQ}}{CDF} \times CFP
\]

- **Containment failure / Source term release**
 - Containment Failure Frequency
 - Source Term Release Fraction
Preliminary Results
Database of the risk information

| No. | STATION BLACKOUT | AAC | DELIVER AUX. FEEDWATER (TD PUMPS) | RCP SEAL FAILURE | RECOVER AC POWER (EN HRS) | DEL. AAPW AND REM. STEAM (MESSI) | DEL. ATFW AND REM. STEAM (ADV) | RECOVER AC POWER LATE | REFUEL AAC STORAGE TANK | SHUT DOWN COOLING | MAINTAIN SECONDARY HEAT REMOVAL | RECOVER AC POWER AND REFUELING AAC | SAFETY DEPRESSURIZATION | SAFETY INJECTION FOR FEED (2/4) | CONTAINMENT HEAT REMOVAL (COOL ENGINE) | CONTAINMENT HEAT REMOVAL (CS SPRAY) | CDF (Level 3 Accident Sequence CDF) | CONTAINMENT ISOLATION SYSTEM | CONTAINMENT FAILURE MITIGATION | RECOVER AC POWER PRIOR TO CONTAINMENT | RECOVER AC POWER PRIOR TO VESSEL | IN-VESSEL INJECTION | CAUSTIC FLOODING SYSTEM | HYDROGEN CONTROL SYSTEM | CONTAINMENT HEAT REMOVAL | FREQU (Accident Sequence Frequency) | CLP (PDS No.) | CCF (CFR/CFF) | CFF (Freq CFP) | Cs |
|-----|------------------|-----|----------------------------------|------------------|--------------------------|-------------------------------|-------------------------------|-----------------------------|--------------------------|-------------------------|--------------------------------|-------------------------------|-----------------------------|---------------------------|-------------------------------|-------------------------------|------------------|--------------------------|-------------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 83 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 85 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 124 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 208 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 418 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 440 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
| 473 | SBO (AAC) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.98E-10 | (AAC) | - | - | - | - | - | - | - | - | - |
Distribution chart

- **CDF Vs CCFP**
 - Core Damage Frequency
 - Conditional Containment Failure Probability
Distribution chart

- **Source term release fraction**
 - CFF Vs RF (2D)
 - CCFP Vs CDF Vs RF (3D)
Concluding Remarks & Future Work
Insight from this works

- **Effective evaluation for SAMP**
 - Legislation
 - Verify the impact of mitigation success and failure

- **Prioritization of severe accident management strategies**
 - Selection of the most important mitigation functions
 - Application
 - Improvement of the equipment
 - Modification of Technical specification
 - Personnel training
Further Work

- Concept for evaluating severe accident
- Methodology for DET/CET branch probability calculation
- Uncertainty analysis of CET using computational code
- Level 2 PSA re-quantification
 - The new index for measuring the effectiveness of AMP
Thank you!!