IAEA Project 1.1.5.2 on SMR Technology Development and Update of Global SMR Development

Dr. M. Hadid Subki
Team Leader, SMR Technology Development
Nuclear Power Technology Development Section
Division of Nuclear Power, Department of Nuclear Energy
SMR: Rationale of developments

A nuclear option to meet the need for flexible power generation for wider range of users and applications

Economic
- Lower Upfront capital cost
- Economy of serial production

Modularization
- Multi-module
- Modular Construction

Flexible Application
- Remote regions
- Small grids

Smaller footprint
- Reduced Emergency planning zone

Replacement for aging fossil-fired plants

Potential Hybrid Energy System

Better Affordability
- Shorter construction time

Wider range of Users

Site flexibility
- Reduced CO₂ production

Integration with Renewables
Status and major accomplishment in Technology Developer Countries

<table>
<thead>
<tr>
<th>Countries</th>
<th>Recent Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>CAREM25 is in advanced stage of construction. Aiming for fuel loading & start-up commissioning in 2019</td>
</tr>
<tr>
<td>Canada</td>
<td>CNSC is performing design reviews for several innovative SMR designs, mostly non-water cooled, including molten salt reactors (MSR)</td>
</tr>
</tbody>
</table>
| China | • HTR-PM is in advanced stage of construction. Commissioning expected in 2018.
 | • ACP100 completed IAEA generic reactor safety review. CNNC plans to build ACP100 demo-plant in Hainan Provence in the site where NPPs are already in operation.
 | • China has 3 floating SMR designs (ACP100S, ACPR50S and CAP-F) |
| Republic of Korea | SMART (100 MWe) by KAERI certified in 2012. SMART undertakes a pre-project engineering in Saudi Arabia, for near-term construction of 2 units. |
| Russian Federation | • Akademik Lomonosov floating NPP with 2 modules of KLT40S is in advanced stage of construction. Aiming for commissioning in 2019.
 | • AKME Engineering will develop a deployment plan for SVBR100, a eutectic lead bismuth cooled, fast reactor. |
| United Kingdom | • Rolls-Royce recently introduced UK-SMR, a 450 MW(e) PWR-based design; many organizations in the UK work on SMR design, manufacturing & supply chain preparation
 | • UK Nuclear AMRC to develop a module demonstrator for the UK-SMR
 | • Develop an understanding of modules and underpin early stage design principles |
| United States of America| • The US-NRC has started design review for NuScale (600 MW(e) from 12 modules) from April 2017, aiming for FOAK plant deployment in Idaho Falls.
 | • TVA submitted early site permit (ESP) for Clinch River site, design is still open. |
Status and accomplishment in Embarking Countries

<table>
<thead>
<tr>
<th>Countries</th>
<th>Recent Milestone</th>
</tr>
</thead>
</table>
| **Saudi Arabia** | • Vision 2030 → National Transformation Program 2020: Saudi National Atomic Energy Project:
• K.A.CARE performs a PPE with KAERI to prepare a construction of 2 units of SMART
• An MOU between K.A.CARE and CNNC on HTGR development/deployment in KSA |
| **Indonesia** | • Through an open-bidding, an experimental 10 MW(th) HTR-type SMR was selected in March 2015 for a basic design work aiming for a deployment in mid 2020s
• Site: R&D Complex in Serpong where a 30 MW(th) research reactor in operation
• BAPETEN, the regulatory body has issued a site license |
| **Jordan** | • Jordan, Saudi Arabia and Republic of Korea is to conduct a feasibility study for a deployment of SMART in Jordan
• Technology assessment workshop with the IAEA |
| **Poland** | • HTGR for process heat application to be implemented in parallel to large LWRs
• 10 MW(th) experimental HTGR at NCBJ proposed possibly with EU cooperation |
| **Tunisia** | • STEG, the National Electricity and Gas Company is active in performing technology assessment for near-term deployable water-cooled SMRs |
| **Kenya** | • Requested support on human capacity building for Reactor Technology Assessment that covers SMRs through IAEA-TC Project, to be implemented in 2018 |
Project 1.1.5.2 for 2018 - 2019

<table>
<thead>
<tr>
<th>Task #</th>
<th>Title of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.5.2 (1)</td>
<td>General Management</td>
</tr>
<tr>
<td>1.1.5.2 (2)</td>
<td>Design, Manufacturing Process and Technology Qualification of Novel Components for Integral PWR type Small Modular Reactors</td>
</tr>
<tr>
<td>1.1.5.2 (3)</td>
<td>Technology Assessment for Deploying Floating Power Units with Small Modular Reactors in Developing Countries with Remote Areas</td>
</tr>
<tr>
<td>1.1.5.2 (4)</td>
<td>Design and Operation Aspects of Water-cooled Small Modular Reactors</td>
</tr>
<tr>
<td>1.1.5.2 (5)</td>
<td>Design and performance assessment of passive engineered safety features in advanced SMRs, implemented as CRP I32010</td>
</tr>
<tr>
<td>1.1.5.2 (6)</td>
<td>Generic User Requirements of Developing Countries for Small and Medium-sized Reactors and their application</td>
</tr>
<tr>
<td>1.1.5.2 (7)</td>
<td>Provide education and training on technology assessment for near term water-cooled reactors and SMRs as a service to the Member States</td>
</tr>
<tr>
<td>1.1.5.2 (8)</td>
<td>Development of Approaches, Methodologies and Criteria for Determining the Technical Basis for Emergency Planning Zone (EPZ) for SMR Deployment, implemented as CRP I31029 (NS and NE)</td>
</tr>
</tbody>
</table>
Project 1.1.5.2 (SMR): **Key Activities**

Meetings:
- Launching the new Technical Working Group for SMR: *The 1st TWG Meeting for Small, Medium-sized or Modular Reactors, Vienna, 23 - 26 April 2018*

Coordinated Research Projects
- 2nd RCM for CRP I32010 on Design and Performance Assessment of Passive Engineered Safety Features in SMRs, Vienna, 7 – 10 May 2018
- 1st RCM for CRP I31029 on Development of Approaches, Methodologies and Criteria for Determining the Technical Basis for EPZ for SMR Deployment, Vienna, 14 – 17 May 2018

New Projects
- TCEU project on Facilitating Capacity Building for SMRs: Developments, Safety Assessment, Licensing and Utilization (2018-19)
- New Peaceful Uses Initiatives (Extra Budgetary) proposals for *generic users’ requirements, reactor technology assessment and IT Tool for SMR*
- SMR proposal to be submitted to EU H2020
Project 1.1.5.2 (SMR): Outputs

Publications

- NES Technology Roadmap for SMR Deployment (to be submitted to the Publication Committee in May 2018) – inter departments collaboration
- TECDOC on Deployment Indicators for SMRs: Methodology, Analysis of Key Factors and Case Studies - A joint activity with NEPK/PESS
- TECDOC Status of Environmental Impact Assessment Approaches for SMR Deployment – a joint activity with NA/TEL Seibersdorf
- TECDOC Options to Enhance Energy Supply Security using Hybrid Energy Systems based on SMRs – inter divisions collaboration
- Revision and update of biannual SMR compendium

Other Outputs

- In cooperation with Nuclear Infrastructure Development Section: adaptation of milestone approach to the case of SMR
- Support NPTDS Water-cooled Reactors Team:
 - Introduce a Basic E-Toolkit for Reactor Technology Assessment – based on the Nuclear Energy Series report No. NP-T-1.10 (2013)
 - Workshop on SMR RTA to Embarking Countries
 - Workshop on the IAEA iPWR simulator
Identification of Potential Infrastructure Issues for SMR Deployments

• As an Action Item from the SAGNE Meeting in April 2017: A Joint NIDS-NPTDS Consultancy Meeting held in July 2017 – referencing to the Milestone Approach (NES NG-G-3.1, Rev. 1)

• Purpose:
To assess, if the Milestone Approach is adaptable for the evaluation of the status of national nuclear infrastructure development when countries opting SMRs

• Conclusions:
– The Milestone Approach is applicable for the evaluation of the infrastructure for SMR deployment;
– The deployment of new technologies introduce uncertainties that may impact siting process (e.g. impact of the technical information on the credibility of the bounding envelope)

• SMRs deployment may present specific implications on: Safeguards, emergency preparedness (EPZ), national position, management and nuclear safety (e.g. application of safety requirements)

• Invited external experts from: Canada, China, Saudi Arabia and Romania
Coordinated Research Projects

• Key objective: Report Verification & Validation methods for SMR’s engineered safety features performance assessment;
• Participants from 11 Member States’ organizations: CNEA, UOIT, CNNC/NPIC, ENRRA, BATAN, BARC, ENEA, KAERI, LEI, PAEC and Rolls-Royce, plc.

CRP I31029 on Development of Approaches, Methods and Criteria for Determining Technical Basis for EPZ for SMR Deployment (2018 – 2020)

• A Joint CRP between Department of Nuclear Energy and Department of Nuclear Safety & Security
• Key objective: address aspects of emergency preparedness & response (EPR) specific for SMR deployment, particularly the size of EPZ;
• Participants from 15 Member States’ organizations: CNEA, CNL, CNPE, SNERDI, INET, VTT, BATAN, SOREQ, Toshiba, KAERI, EC-JRC, PAEC, K.A.CARE, STEG, CRARISK, ANL, TAMU, and Rolls-Royce, plc.
SAGNE-2018 Recommendations

• The Department of Nuclear Energy should pursue cooperation with the Department of Nuclear Safety & Security with a focus on reviewing and streamlining SMR safety and licensing requirements on EPZ and Emergency Preparedness and Response (EPR), backed by technological innovation;

• The ToR of the TWG-SMR should be revised to explicitly include in the areas where TWG will provide advice: “design for safety” and “non-electric applications and cogeneration”
SMR for Non-Electric Applications

Reactor Types
- **Very high temperature reactors**
- **Gas-cooled fast reactors**
- **Molten Salt reactors**
 - Supercritical water-cooled reactors
 - Sodium-cooled fast reactors
 - Liquid metal cooled reactors

Temperature Ranges
- 100°C to 1200°C

Applications
- **District heating**
- **Seawater desalination**
- **Pulp & paper manufacture**
- **Methanol production**
- **Heavy oil desulfurization**
- **Petroleum refining**
- **Methane reforming hydrogen production**
- **Thermochemical hydrogen production**
- **Coal gasification**
- **Blast furnace steel making**
Marine-based SMRs (Examples)

KLT-40S
- Compact-loop PWR
- 60 MW(e) / 200 MW(th)
- Core Outlet Temp.: 322°C
- Fuel Enrichment: < 5%
- FPU for cogeneration
- Once through SG, passive safety features
- Fuel cycle: 30 months
- To be moored to coastal or offshore facilities
- Completion of conceptual design programme

ACPR50S
- Compact-loop PWR
- 35 MW(e) / 150 MW(th)
- Core Outlet Temp.: 316°C
- Fuel Enrichment: 18.6%
- FPU for cogeneration
- Without Onsite Refuelling
- Fuel cycle: 36 months
- Spent fuel take back
- Advanced stage of construction, planned commercial start: 2019 – 2020

FLEXBLUE
- Transportable, immersed nuclear power plant
- PWR for Naval application
- 160 MW(e) / 530 MW(th)
- Core Outlet Temp.: 318°C
- Fuel Enrichment: 4.95%
- Fuel Cycle: 38 months
- Passive safety features
- Transportable NPP, submerged operation
- Up to 6 module per on shore main control room
- To be moored to coastal or offshore facilities
- Completion of conceptual design programme

SHELF
- Transportable, immersed NPP
- Integral-PWR
- 6.4 MW(e) / 28 MW(th)
- 40,000 hours continuous operation period
- Fuel Enrichment: < 30%
- Combined active and passive safety features
- Power source for users in remote and hard-to-reach locations;
- Can be used for both floating and submerged NPPs

Floating Power Units (FPU)
- Compact-loop PWR
- 35 MW(e) / 150 MW(th)
- Core Outlet Temp.: 316°C
- Fuel Enrichment: 18.6%
- FPU for cogeneration
- Without Onsite Refuelling
- Fuel cycle: 36 months
- Spent fuel take back
- Advanced stage of construction, planned commercial start: 2019 – 2020
- FPU for cogeneration
- Once through SG, passive safety features
- Fuel cycle: 30 months
- To be moored to coastal or offshore facilities
- Completion of conceptual design programme

Transportable, immersed nuclear power plant
- PWR for Naval application
- 160 MW(e) / 530 MW(th)
- Core Outlet Temp.: 318°C
- Fuel Enrichment: 4.95%
- Fuel Cycle: 38 months
- Passive safety features
- Transportable NPP, submerged operation
- Up to 6 module per on shore main control room
- To be moored to coastal or offshore facilities
- Completion of conceptual design programme

Transportable, immersed NPP
- Integral-PWR
- 6.4 MW(e) / 28 MW(th)
- 40,000 hours continuous operation period
- Fuel Enrichment: < 30%
- Combined active and passive safety features
- Power source for users in remote and hard-to-reach locations;
- Can be used for both floating and submerged NPPs

Images reproduced courtesy of OKBM Afrikantov, CGNPC, DCNS, and NIKIET
Status of Deployment Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KLT-405
- Barge Prep, Fuel Loading
- Operation→2060

HTR-PM
- Graphite, Pebble Loadings
- Operation→2060

CAREM
- Construction
- Fuel loading
- Operation→2060

ACP1000
- Construction
- Fuel loading
- Operation→2085

SMART
- Post SDA Licensing
- Construction
- Fuel loading
- Operation→2085

NuScale
- Design Certification Review (42 months)
- Construction
- Fuel loading
- Operation→2085
Current Challenge: Construction Management

Reasons for delayed are varied, including to incorporate safety lessons learned.

Technology alone does not shorten construction time.

Large Reactors connected to Grid since 1990:
- China
- Japan
- Republic of Korea
- Russia

N-th of a kind 36 month target.
SMR: Advantages, Issues & Challenges

Technology Issues
- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.)
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno Issues
- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology Issues
- Licensability (FOAK designs)
- Non-LWR technologies
- Operability and Maintainability
- Staffing for multi-module plant; Human factor engineering;
- Supply Chain for multi-modules
- Advanced R&D needs

Non-Techno Issues
- Economic competitiveness
- Plant cost estimate
- Regulatory infrastructure
- Availability of design for newcomers
- Physical Security
- Post Fukushima action items on institutional issues and public acceptance
Thank you!

For inquiries on SMR, please contact:
Dr. M. Hadid Subki
IAEA Nuclear Power Technology Development Section
M.Subki@iaea.org