For best browsing experience, please use Internet Explorer 7 or a later version.
Type = Unknown
Name = Unknown
Version = 0.0
Major Version = 0
Minor Version = 0
Platform = Unknown
Is Beta = False
Is Crawler = True
Is AOL = False
Is Win16 = False
Is Win32 = False
Supports Frames = False
Supports Tables = False
Supports Cookies = True
Supports VB Script = False
Supports JavaScript = 0.0
Supports Java Applets = False
CDF = False
Skip Ribbon Commands
Skip to main content
IDIDAS : References: Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids.


Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids.




Biological Control Volume 60, Issue 3, Pages 247-254


Long-term separation of a host from its native parasitoids may result in divergent thermal adaptation between host and parasitoid. The olive fruit fly, Bactrocera oleae (Rossi), most likely originated from Sub-Saharan Africa, but has since had a long invasion history in cultivated olives that spans geographical barriers and continents. This study compared three major thermal performance profiles (development, survival, and reproduction) across a wide range of temperatures (10–34 °C) among a Californian population of the olive fruit fly and two African parasitoids, Psyttalia lounsburyi (Silvestri) and Psyttalia humilis (Silvestri), believed to have co-adapted with the fruit fly in its native range. Temperature ranges for the development and survival were 10–30 °C for the fly, 10–28 °C for P. lounsburyi, and 14–32 °C for P. humilis. There was no difference in any thermal performance measured between two P. humilis populations (Kenya and Namibia) tested. The most suitable temperature ranges for reproduction were 22–30 °C for the fly, 18–32 °C for P. humilis, and 18–26 °C for P. lounsburyi. The results showed slight differences in the thermal profiles among olive fruit fly and both parasitoids species, with P. humilis being more heat tolerant whereas P. lounsburyi was less heat tolerant than the fruit fly. The results are discussed with respect to thermal co-adaptation and classical biological control of the olive fruit fly.


Wang Xin-geng, Levy Karmit, Son Youngsoo, Johnson Marshall W., Daane Kent M.


Bactrocera oleae; Psyttalia; Biological control; Co-adaptation; Host–parasitoid interaction; Temperature development; Thermal adaptation


Content Type: Item
Created at 17/06/2013 15:57 by NAIR, Deepu
Last modified at 17/06/2013 15:57 by NAIR, Deepu