Miniaturized High-Resolution CZT Modules for Drone-Based Waste Characterization

Dr. Michael Streicher (michael@h3dgamma.com)
Dr. Willy Kaye (willy@h3dgamma.com)
Dr. David Goodman (dgoodman@h3dgamma.com)

H3D, Inc.
May 2022
Introduction to H3D’s 3D CZT

- NaI: 7% @ 662 keV, room temperature operation
- HPGe: 0.2% @ 662 keV, -200C operation temperature
- CZT: <1% @ 662 keV, room temperature operation, up to 24 cm3
 - HPGe-like resolution + rugged + low power operation + high efficiency

Source: Eu-152
3-D CZT single-pixel events
Resolution = 0.7% FWHM
Gamma-Ray Imaging

Compton Imaging: > 250 keV

Number of photons: 233

Acknowledgement: Prof. Zhong He, et. al, U. of Michigan for original research
Acknowledgement: US DoD DTRA for CZT development funding
Compton Imaging Example

Center region of pump hottest from direct 58Co emissions.

Contamination on floor and wall just behind H100.

Left region of pump hottest from direct 60Co emissions.
Coded Aperture Imaging

Coded Aperture: < 500 keV
Major Pivot to M-series Design (2019)

- Reduce weight from 3.6 kg to 0.5 kg
- Reduce size from 4100 cc to 332 cc
- Reduce power consumption from variable up to 30 W to constant 5 W
- Increase count rate from 35 kcps to 120 kcps
- Maintain 2.5 keV FWHM @ 140 keV
- Maintain 0.7 mm position resolution @ 140 keV
- Medical markets – high density
 - 20% active volume
 - Drone-mounted sensors
 - Integrable modules
Drone Platform & Measurement Site

- DJI Matrice 300 Drone
 - Manually controlled
- M400 on non-articulating gimble
- Real-time GPS and altitude recorded at 1 Hz
- Spectra summed at same rate
- Measurements at orphan natural gas well in Michigan, USA
- 226Ra contamination
- Dose rates varied from 0.2 μSv/hr up to 50 μSv/hr
- July 19th, 2021
Example Spectra Recorded - Summed

Peaks from 226Ra (186 keV) and its progeny:
- 214Pb (241/295/351/... keV)
- 214Bi (609/1120/1764/... keV)
Attenuation Differences

![Graph showing energy vs. counts per keV for high and low attenuation cases.](image)
Comparison to Earlier NaI Drone Measurement
Additional Information from Gamma-ray Imaging

A – Settling Tanks with ~ 1 mCi 226Ra
B – Ground contamination near pipes
C – One barrel significantly more activity than others
SourceTerm Software Package

Isotope library

Geometry model

$^{58}\text{Co} \; \text{uCi/mL}$

$^{95}\text{Nb} \; \text{uCi/mL}$

\ldots

$^{51}\text{Cr} \; \text{uCi/mL}$
Hotspot Activity Measurement

- Numerous settling tanks in area “D” – not driving dose!
- Garbage bags full of insulation driving dose
- Leaky valve was another hot spot
- Estimated 200 μCi of ^{226}Ra contamination
Contributions

• CZT sensors can be manufactured in small form factors and easily mounted as payload for drones
• CZT detectors provide high resolution spectroscopy for easy identification and quantification of contamination
• Inherent imaging capabilities provide even more information about contamination sources and help aide quantification calculations

Dr. Michael Streicher
michael@h3dgamma.com
(734) 661-6416 ext. 121
https://www.linkedin.com/in/michael-streicher-128698104/