Building the Bridge from Both Ends: Comprehensive Extraction and Zero Waste Strategies for NORM Industry Tailings and Residues

Hari Tulsidas, Julian Hilton, Brian Birky, Malika Moussaid, T.K. Haldar, Rafael Garcia Tenorio

International Atomic Energy Agency,
Aleff Group, Florida Industrial and Phosphate Research Institute,
University of Seville
The terms

- **Sustainability**: The capacity of the present generation to meet its needs without compromising or impairing the ability of future generations to meet theirs.

- **Comprehensive extraction (CX)**: “comprehensive extraction† and conservation of earth’s mineral reserves and resources”* - all resources are co-products.

- **Zero waste (0W)**: Zero waste.

- **Innovation**: New capabilities through continuous improvement or creative disruption.

- **Beneficiation**: Making resources better or making better resources – the rise of the co-product and the by-product.

- **Value stream release**: The development and use of new economic resources from “residuals” (System of Environmental-Economic Accounting (SEEA)).

† Dr. Pingru Zhong, IAEA Technical Meeting on Uranium from Unconventional Resources, September 2011.
The terms of the new equilibrium

Sustainability

Comprehensive extraction + Zero waste
Innovation + Beneficiation
Sustainability

Innovation

Beneficiation

Value Stream

CX

0W
Proof of concept: UxP

Uranium...

... Phosphate

... co-products across their life-cycles

Challenging the boundaries of “conventional” and “unconventional” resource provenance
CX

Co-Products
Single Mineral or Complex Resource?

What do I see?
What do I see?

- Phosphate Rock
- Phosphoric Acid
- Purified Acid
- Phosphogypsum
- Yellow Cake
- Phosphate Fertiliser
- Rare Earths
- Sulphur
- Ammonium Sulphate

What else?
The world’s largest uranium mine is a copper mine.

The world’s largest uranium deposit is a phosphate “province.”
OW

“The Release of Residuals”
Tailings and Residues
PHOSPHATE ROCK:

Primary resource – 25% P_2O_5
PHOSPHATE MINE TAILINGS:

“Waste” – 25% P_2O_5
What am I looking at?

Phospho-gypsum: Waste or Resource?
Innovation and Beneficiation
Constructive Regulation: Co-products of phosphate
Phosphogypsum is an affordable, safe Soil Amendment, construction resource etc etc - not a Waste
Secondary Resources and Comprehensive Extraction

1. What are Secondary mineral resources?
 – by-product in mining
 – by/co-product from reprocessing of waste, tailings and residues
 – by/co-product arising from clean-up of materials
 – by/co-product for environmental management activities, such as environmental remediation

2. Advantages in recovery
 – improves the recovery of main product, or other co-products
 – open avenues to CX - recovery of many other materials
 – produce cleaner down stream products
 – introduces innovative technologies that can have spin-off benefits
 – positive benefits on the health, safety and environment

3. Unconventional uranium resources are often 6-7 x more
 – Proper assessment, classification and management using UNFC-2009 required
 – Supply depends on a successful CX business model

4. Traditional mining mindset needs to change?
 – See only one target material not enough?
Some past experiences with U

• By product of Copper
 – Bingham Canyon, USA, 1978-89, 2-15 ppm, 50 tU/y
 – Twin Buttes, Arizona, USA, 100 tU/y
 – Yerington, Nevada, USA

• Polymetallic Iron Oxide Breccia Complex
 – Olympic Dam, Australia (Currently, ongoing co-product of Cu and Ag - 3 353 tU/y)

• Carbonatite
 – Phalabora, South Africa – until 2001 640 tU (30-40 ppm) as by-product of Cu, etc

• Coal-lignite
 – Freital-Gittersee deposit, Germany, 3 700 tU, 0.12% U
 – Dakota Plains, USA
 – Min-Kush, Kyrgyzstan

• Paleo quartz pebble conglomerate Au – U
 – Continues in South Africa

• Phosphate
 – Florida, USA, 17 500 tU (1978 – 1991)
 – Belgium (from Moroccan phosphate rock)

• Shale
 – Schmirchau-Reust, Drosen, Paitzdorf, Germany
Comprehensive extraction

• Mining in general is seeing declines in capital and labour productivity – mostly due to decline in ore grades combined with upgradation of mining infrastructure.

• Comprehensive extraction in 1990s looked into technical feasibility of extraction form lower grade and other uneconomical resources.

• Now it is seen as a way to improve overall economics and address health, safety and environmental issues.

Change in mindset

Mostly overlooked Columbite from Pitinga project, Brazil (Mineração Taboca)

Currently produces Sn; and minor Nb, Ta (6.5% recovery). Has decided to produce additional Ta, Nb, Y, REE, U and Th by 2020.
Future possibilities for U (1/2)

<table>
<thead>
<tr>
<th>No</th>
<th>Country</th>
<th>Project</th>
<th>Operator</th>
<th>Deposit type</th>
<th>Materials recovered</th>
<th>Nominal production capacity (tU/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Australia</td>
<td>Nolans Bore</td>
<td>Arafura Resources</td>
<td>Intrusive/Peralka line complex</td>
<td>REE, P, Th, U</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>Greenland</td>
<td>Kvanefjeld</td>
<td>Greenland Minerals and Energy Limited</td>
<td>Intrusive/Peralka line complex</td>
<td>REE, U, Zn, Flurospar</td>
<td>425</td>
</tr>
<tr>
<td>3</td>
<td>Malawi</td>
<td>Kanyika</td>
<td>Globe Metals and Mining</td>
<td>Intrusive/Peralka line complex</td>
<td>Nb, Ta, Zr, U</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Brazil</td>
<td>Pitinga</td>
<td>Mineração Taboca</td>
<td>Intrusive/Peralka line complex</td>
<td>Sn, Nb, Ta, REE, Th, U</td>
<td>?</td>
</tr>
<tr>
<td>5</td>
<td>Chile</td>
<td>Chuquicamata</td>
<td>CCHEN - CODELCO Norte</td>
<td>Intrusive/Quartz monzonite</td>
<td>Cu, U, Mo</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Sweden</td>
<td>Häggån</td>
<td>Aura Energy</td>
<td>Black Shale</td>
<td>U, Ni, Mo</td>
<td>3000</td>
</tr>
<tr>
<td>7</td>
<td>Finland</td>
<td>Talvivaara</td>
<td>Talvivaara Sotkamo Ltd</td>
<td>Black Shale</td>
<td>Ni, Zn, Cu, Co, U</td>
<td>350*</td>
</tr>
</tbody>
</table>
Future possibilities for U (2/2)

<table>
<thead>
<tr>
<th>No</th>
<th>Country</th>
<th>Project</th>
<th>Operator</th>
<th>Deposit type</th>
<th>Materials recovered</th>
<th>Nominal production capacity (tU/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Morocco</td>
<td></td>
<td>OCP</td>
<td>Phosphate</td>
<td>U</td>
<td>1900</td>
</tr>
<tr>
<td>9</td>
<td>USA</td>
<td>Plant City</td>
<td>CF</td>
<td>Phosphate</td>
<td>U</td>
<td>2680</td>
</tr>
<tr>
<td>10</td>
<td>Brazil</td>
<td>Santa Quitéria</td>
<td>INB – Galvani JV</td>
<td>Metamorphite/Marble hosted Phosphate</td>
<td>P, U, Th</td>
<td>970</td>
</tr>
<tr>
<td>11</td>
<td>South Africa</td>
<td>TPM Uranium Project</td>
<td>Harmony Gold</td>
<td>Paleo Quartz-pebble conglomerate</td>
<td>Au, U</td>
<td>340</td>
</tr>
<tr>
<td>12</td>
<td>South Africa</td>
<td>Free State Tailings Uranium Project</td>
<td>Harmony Gold</td>
<td>Paleo Quartz-pebble Conglomerate tailings</td>
<td>U</td>
<td>700</td>
</tr>
<tr>
<td>13</td>
<td>South Africa</td>
<td>Springbok Flats (Settlers area)</td>
<td>HolGoun Uranium & Power</td>
<td>Coal-lignite</td>
<td>Coal, U</td>
<td>600</td>
</tr>
<tr>
<td>14</td>
<td>Canada</td>
<td>Eco Ridge</td>
<td>Pele Mountain Resources</td>
<td>Paleo-quartz pebble conglomerate</td>
<td>REE, Sc, Eu, Gd, U</td>
<td>~950</td>
</tr>
</tbody>
</table>
The Co-product Options

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Number of reported world deposits</th>
<th>Number of U deposits recorded in UDEPO</th>
<th>Total Resources in UDEPO (t U)</th>
<th>Average Grade (ppm U)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 1 | Intrusive (Carbonatite, Peralkaline, Plutonic, Quartz monzonites) | 646 – Porphyry copper deposits \(a\)
 | | 125 – Peralkaline complex \(b\) | 5027 – Carbonatites \(c\) | 33 | 896 883 | 40 – 6 400 | REE, Nb, Ta, Zr, U, Cu, Au, Ag, Mo |
| 2 | Polymetallic Iron Oxide Breccia Complex | 33\(d\) (numerous \(e\)) | 16 | 2 438 773 | 60 - 850 | Cu, Au, Ag, U |
| 3 | Lignite-coal | 2700\(f\) (23 057 billion tonnes Reserves + Resources \(g\)) | 35 | 7 388 122 | 20 – 1 700 | U, Ge |
| 4 | Phosphate | 1635\(h\) (300 billion tonnes \(i\)) | 57 | 14 058 525 | 10 – 3 033 | P, S, Sc, F, REE, U |
| 5 | Black shale | 64\(j\) | 50 | 20 963 792 | 17 - 1200 | Ni, Co, Cu, U |
| 6 | Paleo quartz-pebble conglomerate (Au dominant) | 64\(k\) | 25 | 467 342 | 30-80 | Au, U |
| | Paleo quartz-pebble conglomerate (U dominant) | | | | | |
| 7 | Heavy mineral sands | 77\(l\) | | | | REE, Ti, Th, Zr, Sn |
| 8 | Lignite-coal ash | 21 billion tonnes \(m\) | | | | U, Ge, Mo, etc |
| 9 | Mine tailings | | | | | Multiple, U |
| 10 | Mine wastes | | | | | Multiple, U |
| 11 | Mine water | | | | | Multiple, U |
| 12 | Phosphogypsum | 2.6 – 3.7 billion tonnes \(n\) | | | | REE, F, S, U |
| 13 | Metal slags | | | | | Sn, Nb-Ta slags with U |
| 14 | Sea water | | | 4 500 000 000 | 3.3 ppb | Multiple, U |

Total (excluding seawater) 47 883 584

\(a\) Singer. et.al. 2005; \(b\) Orris and Grauch, 2002; \(c\) Woolley and Kjarsgaard, 2008; \(d\) – Cox and Singer, 2007; \(e\) Barton, 2014; \(f\) IHS Global Coal Database; \(g\) BGR, 2014; \(h\) Chernoff, 2002; \(i\) – USGS, 2015; \(j\) – including gold tailings, S. Africa; \(k\) – ThDEPO; \(l\) – Monnet, 2014; \(m\) – IAEA, 2013
UxP – The Co-product Option

Unconventional U

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite (2%)</td>
<td>313,685</td>
</tr>
<tr>
<td>Black Shale (8%)</td>
<td>1,199,086</td>
</tr>
<tr>
<td>Other (2%)</td>
<td>234,137</td>
</tr>
<tr>
<td>Phosphates (88%)</td>
<td>12,894,830</td>
</tr>
</tbody>
</table>

Total 14,641,738

UDEPO, 2012
UxP - U as P co-products for energy and food
Resource Sustainability: the New Equilibrium
Building the bridge to the future from both ends

CX The Social Licence to Operate OW
Thank you for your kind attention

Hari Tulsidas h.tulsidas@outlook.com
Julian Hilton juliankh@aol.com
Brian Birky bbirky@flpoly.org
Rafael García Tenorio Gtenorio@us.es