Superfund Radiation Risk Assessment Calculator Training

Stuart Walker, OSRTI
Fred Dolislager, ORNL
Purpose of Training

• Facilitate remedy selection and cleanup at radioactively-contaminated sites.
• Establish knowledge base on radiation, radiation risk assessment, and CERCLA requirements and other relevant policy.
• Simplify radiation risk assessment through use of 8 radionuclide guidance calculators.
• Demonstrate similar risk assessment capabilities in SADA using GIS.
• Demonstrate the compatibility with RSL chemical calculator.
Outline of Training

1. How Radiation Fits in Superfund
2. Radiation Risk Assessment Video & Community Toolkit
3. PRG Calculator
4. DCC Calculator
5. RSL for Total Uranium
6. BPRG and BDCC Calculators
7. SPRG and SDCC Calculators
8. Differences between EPA and DOE Tools
9. BCG Calculator
10. CPM Calculator
11. RVISL
12. SADA
13. Radiation Science Primer
14. Radiation Risk Assessment Basics
Radiation Risk Assessment Calculator Training

Section 1: How Radiation Fits Into Superfund
Superfund sites: Number and Progress (*old statistics*)

- 1,320 NPL sites
  - 66 are radiation sites
  - 59 more sites proposed for NPL
  - 1 is a radiation site
- 1,174 NPL sites are “construction completion”
  - 38 are radiation sites
- 389 Sites have been deleted from NPL
  - 9 are radiation sites
How to Address Radiation in a Chemical Program?

◆ With only 66 radioactively contaminated sites out of 1,320 total, the focus of the Superfund program has been on chemicals.

◆ **Question:** How best address radiation?

◆ **Answer:** Address radiation in a consistent manner with chemicals, except to account for the technical differences posed by radiation
  - Radiation easily fits within Superfund framework
  - Improves public confidence by taking mystery out of radiation
Why Does Radiation Easily Fit within the Superfund Framework?

- Primary effect is cancer
- People ingest, inhale, eat, same amount of contaminated dust and food whether it is chemical or radioactive contamination,
- Dust gets resuspended the same whether it is chemically or radioactively contaminated
- Inorganic elements move through the subsurface whether they are radioactive or not
Nine CERCLA Remedy Selection Criteria

◆ Two threshold criteria (both must be met)

1. Protect human health and the environment
2. Comply (attain or waive) with other federal and state laws: Applicable or Relevant and Appropriate Requirements (ARARs)
   • Protect current or future sources of drinking water (e.g., attain MCLs or more stringent state standards)
Nine CERCLA Remedy Selection Criteria (continued)

◆ 6 CERCLA ARAR waivers
  1. Interim Measure
  2. Greater Risk to Health and the Environment
  3. Technical Impracticability
  4. Equivalent Standard of Performance
  5. Inconsistent Application of State Requirements
  6. Fund Balancing
Nine CERCLA Remedy Selection Criteria (continued)

◆ Five balancing criteria (used to evaluate between potential remedies that meet threshold criteria)

1. Long-term effectiveness and permanence
2. Reduction of waste toxicity, mobility, or volume
3. Short-term effectiveness
4. Implementability
5. Cost
Nine CERCLA Remedy Selection Criteria (continued)

- Two modifying criteria (information from public comment period that may modify remedial action)
  1. State acceptance
  2. Community acceptance
CERCLA Cleanup Levels

◆ ARARs often determine cleanup levels
◆ Where ARARs are not available or protective, EPA sets site-specific cleanup levels that
  ▪ For carcinogens, represent an increased cancer risk of $1 \times 10^{-6}$ to $1 \times 10^{-4}$
    • $10^{-6}$ used as “point of departure”
    • PRGs are established at $1 \times 10^{-6}$
  ▪ For non-carcinogens, will not result in adverse effects to human health (hazard index (HI) <1)
◆ Address ecological concerns
◆ To-be-considered (TBC) material may help determine cleanup level
CERCLA Cleanup Levels Are **NOT** Based On

◆ NRC decommissioning requirements (e.g., 25, 100 mrem/yr dose limits) 10 CFR 20 Subpart E
  - If used as an ARAR, $10^{-6}$ still used as point of departure, and $10^{-4}$ to $10^{-6}$ risk range must be met

◆ Guidance outside risk range and/or if expressed as a dose (# mrem/year). This includes:
  - DOE orders, NRC guidance (e.g., NUREGs), ICRP guidance, IAEA guidance, NCRP guidance, ANSI/HPS guidance, EPA/DHS PAGs, and Federal guidance
Guidance: Risk Assessment Q&A
Originally Issued 1999

- *Radiation Risk Assessment at CERCLA Sites: Q&A (12/99) OSWER Directive 9200.4-31P*
- Provides *overview of then current* EPA guidance for radiation risk assessment
- Written for users familiar with Superfund but not radiation
- Added some new guidance
  - Dose assessment only for ARAR compliance
  - No dose-based TBCs (including *No* 15 mrem/yr [0.15 mSv/yr])
  - Direct exposure rate may supplement sampling
Guidance: Risk Assessment Q&A Revised Issued 2014

- *Radiation Risk Assessment at CERCLA Sites: Q&A (6/14)* OSWER Directive 9200.4-40
- Provides **overview of now current** EPA guidance for radiation risk assessment
- Written for users familiar with Superfund but not radiation
- Updates old overview and adds some new guidance
  - See following slides
Reflect Superfund Recommended guidance issued since 1999

2. Rad SSG TBD 2000
3. PRG calculator 2002
4. Common Rads found at Superfund sites 2002
5. DCC calculator 2004
6. SF Rad Risk Assessment & How You Can Help 2005
7. BPRG calculator 2006
8. SPRG calculator 2009
9. BDCC calculator 2010
10. SDCC calculator 2010
11. CPM calculator 201??
12. Eco calculator 201??
For an effective dose standard ARAR to be considered protective, it should be 12 mrem/yr or less.

- Change from 15 mrem/yr based on risk to dose estimate in Federal Guidance 13
- Cleanup levels not based on an ARAR continue to be based on cancer risk range (10^-4 to 10^-6) **not** dose
Update Policies Based on Newer Science, cont.

◆ To comply with UMTRCA indoor radon standard as an ARAR, users may assume the following concentrations correspond to 0.02 Working Levels:
  - 5 pCi/l of Rn-222
  - 7.5 pCi/l of Rn-220
◆ The methodology for making these conversions is discussed in ICRP “Lung Cancer Risk from Radon and Progeny”
More consistency on Risk Assessments (Rad & Chem)

◆ Explain what type of circumstances these Superfund guidance and tools are recommended

◆ Reiterate more strongly that risk assessments (e.g., models used) should be consistent with chemicals at site and with other regional sites

◆ Don’t use a steady state model for chemical and a transfer/dynamic model for radionuclides
  ▪ Such as using RSL calculator for chemicals then RESRAD for radionuclides, more on this later
More consistency on Surveys (Rad & Chem)

- Explain what type of circumstances these Superfund guidance and tools are recommended
- Reiterate more strongly that site surveys (e.g., characterization and confirmation) should be consistent with chemicals at site and with other regional sites
- Don’t use not-to-exceed (NTE) for chemicals and area averaging (AA) for radionuclides for residential
  - NTE for residential cleanup of chemicals but AA approach like MARSIMM for the radionuclides
Radiation Risk Assessment Calculator Training

Section 2: Radiation Risk Assessment Video & Community Toolkit
Video: Radiation Risk Assessment

◆ *Superfund Radiation Risk Assessment and How you can Help, an Overview* (3/05) OSWER Directive 9200.4-37

◆ Video for the general public. It contains information on:
  - The Superfund risk assessment process when addressing radioactive contamination
  - How the public is involved site-specifically
Community Toolkit

- This toolkit was developed to help the public understand more about the risk assessment process used at Superfund sites with radioactive contamination.
- Text is written in plain English (8th grade level)
Toolkit Organization

- The Toolkit is made up of a collection of 22 fact sheets.
  - Not every fact sheet will be useful at each site.
  - Regions will also continue to use other community involvement tools and site-specific fact sheets.

- The first 2 fact sheets in this toolkit are:
  1. Superfund Radiation Fact Sheet (10 pages)
  2. Superfund Radiation Risk Assessment Fact Sheet (8 pages)
Superfund Radiation Fact Sheet

- Provides information answering the following questions:
  - What is Superfund?
  - What are atoms?
  - What is Radiation?
  - What is Radioactivity?
  - What happens to radionuclides as they decay?
  - What is half-life?
Superfund Radiation Fact Sheet continued

- How is radioactivity measured?
- Why are radionuclides harmful to human health?
- How can you be exposed to harmful radiation?
- How is radiation exposure measured?
- How does EPA calculate risks to human health from radiation exposure at Superfund sites?
- What is background radiation?
Superfund Radiation Fact Sheet continued

Superfund Radiation Fact Sheet

What is Superfund? The Superfund program is administered by U.S. Environmental Protection Agency (EPA) in cooperation with state and tribal governments. It allows EPA to clean up hazardous waste sites and to force responsible parties to perform cleanups or reimburse the government for cleanups led by EPA.

For a variety of reasons, hazardous commercial and industrial wastes were mismanaged and may pose unacceptable risks to human health and the environment. This waste was dumped on the ground or in waterways, left out in the open, or otherwise improperly managed. As a result, thousands of hazardous waste sites were created throughout the United States. These hazardous waste sites commonly include manufacturing facilities, processing plants, landfills, and mining sites.

Superfund was established in 1980 by an act of Congress, giving EPA the funds and authority to clean up polluted sites.

Goals of Superfund:
- Protect human health and the environment by cleaning up polluted sites
- Involve communities in the Superfund process
- Make responsible parties pay for work performed at Superfund sites

Superfund is the informal name for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1980, Congress enacted CERCLA in response to growing concerns over the health and environmental risks posed by hazardous waste sites. This law was enacted in the wake of the discovery of chemically contaminated toxic waste dumps such as Love Canal and Valley of the Drums in the 1970s.

Some Superfund sites contain radioactive contamination. This document was developed by EPA to answer questions about radiation hazards and how EPA assesses health risks from potential exposure to radioactive contamination at Superfund sites.

Ionizing Radiation Found at Superfund Sites

<table>
<thead>
<tr>
<th>Description</th>
<th>Alpha Particles</th>
<th>Beta Particles</th>
<th>Gamma Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two protons and two neutrons bound together into a single particle</td>
<td>• Made up of an electron ejected from nucleus</td>
<td>• Pure energy traveling at the speed of light</td>
<td></td>
</tr>
<tr>
<td>• Heaviest and slowest moving type of ionizing radiation</td>
<td>• Fast moving, low mass particle</td>
<td>• Often accompanies the emission of alpha or beta particles</td>
<td></td>
</tr>
<tr>
<td>• Positively charged</td>
<td>• Negatively charged</td>
<td>• Has no rest mass and no charge</td>
<td></td>
</tr>
</tbody>
</table>

Ionizing Power

| HIGH | MODERATE | LOW |
| Interacts strongly with surrounding material | Interacts less strongly than alpha particles but more strongly than gamma rays with surrounding material | Since they have no mass and no charge, gamma rays interact with matter less than alpha and beta particles |
| Very energetic | |

Penetrating Power

| LOW | MODERATE | HIGH |
| Traveled no more than a few centimeters in air | Able to travel several meters through air | Able to travel hundreds of meters through air |
| Can be stopped by a sheet of paper | Can be stopped by a thin layer of metal or plastic | Can be stopped by a thick concrete wall |
| Unable to penetrate skin | Can penetrate outer layers of skin | Able to pass through the human body |

Human Health Effects

| No health effects from external exposure since they are unable to penetrate skin | Can cause skin burns from external exposure | Can cause harm from external exposure |
| Very harmful if alpha-emitting radionuclide is taken into the body by ingestion, breathing, or through an open wound | Harmful if taken into the body (though not usually as harmful as alpha particles) | Can pass into the body and cause internal radiation exposure |
Superfund Radiation Fact Sheet continued

Some Common Ways to be Exposed to Radionuclides at Contaminated Sites

- Residential Soil Exposure
  - Breathing in Dust Particles
  - External Exposure
  - Eating Fruits and Vegetables
  - Incidental Soil Ingestion

- Agricultural Soil Exposure
  - Breathing in Dust Particles
  - External Exposure
  - Eating Fish, Chicken, and Eggs
  - Consuming Pork, Beef, and Milk
  - Incidental Soil Ingestion

- Soil to Ground Water Exposure
  - Drinking Water
  - Well
  - Leaching

- Tap Water Exposure
  - Breathing in Vapors
  - Drinking Water

Relative Doses from Radiation Sources (Millirem Doses)

- Gastrointestinal series: 1,400 millirem (single procedure)
- Radon in average home: 200 millirem (annual)
- Diagnostic radiology: 50 millirem (annual)
- Mammogram: 30 millirem (single procedure)
- Terrrestrial radioactivity: 28 millirem (annual)
- Cosmic radiation living at sea level: 24 millirem (annual)
- Cosmic radiation living in Denver: 50 millirem (annual)
- Natural radioactivity in the body: 40 millirem (annual)
- Living near a nuclear power station: <1 millirem on average (annual)
Superfund Radiation Risk Assessment Fact Sheet

◆ Describes each of the 4 steps of the Superfund risk assessment process at radioactively contaminated sites
1. Data Collection and Evaluation
2. Exposure Assessment
3. Toxicity Assessment
4. Risk Characterization
Superfund Radiation Risk Assessment
Fact Sheet, continued

The Superfund program uses a process called risk assessment to calculate health risks posed by hazardous contamination and waste. A risk assessment conducted at Superfund sites with radioactive contamination is divided into four parts:

1. Data Collection and Evaluation
2. Exposure Assessment
3. Toxicity Assessment
4. Risk Characterization

The first three steps allow EPA to answer key questions about the contaminated site:

- What type of radioactive contamination is present?
- Where is the radioactive contamination located?
- How could people be exposed to the contamination?
- What are the potential harmful health effects from the contamination?
- And what are the uncertainties?

All of this information is then incorporated in the risk characterization, which is used to make a decision about how to clean up the site.

Step 3: Toxicity Assessment

The toxicity assessment phase answers two key questions: what potential harmful health effects can the radionuclide cause, and how much exposure to the radionuclide does it take to pose a significant risk to people?

The toxicity assessment is concerned with the potential for radionuclides to cause cancer. All radionuclides can cause cancer and are assumed to be potentially harmful even at low doses. The risk of cancer from radiation increases as the exposure increases. Uranium radionuclides are the only radionuclides where the noncancer effects are also considered during Superfund site cleanup.

In estimating the toxicity of a radionuclide, EPA must take into account the type of radiation it emits and how the radiation affects different organs in the body. Alpha particles, for example, inflict about 20 times more damage to living tissue than beta particles or gamma rays. In addition, different organs in the body have different cancer rates even when exposed to the same level of radiation. As a result, EPA must consider both whole body radiation exposure as well as specific organ exposure for certain radionuclides.

EPA has developed two methods to assess the harmful effects of exposure to specific radionuclides:

- Slope factors provide cancer risk posed by lifetime exposure to specific...
Compendium of Information on the PRG & DCC Calculators

◆ Attachment A provides 1 Page Fact Sheets on each of the Superfund risk and dose assessment models

3. Primer on EPA PRG and DCC Calculators
4. Preliminary Remediation Goals (PRG) Calculator
5. Dose Compliance Concentration (DCC) Calculator
7. Building Dose Compliance Concentration (BDCC) Calculator
8. Surface Preliminary Remediation Goals (SPRG) Calculator
9. Surface Dose Compliance Concentration (SDCC) Calculator
The PRG & DCC calculator fact sheets explain:

- What is a PRG or DCC?
- What media are addressed in the calculator?
- What exposure pathways are addressed in the calculator?
Preliminary Remediation Goals (PRG) Calculator Fact Sheet

What is PRG?
- PRG stands for Preliminary Remediation Goal.
- PRGs are the initial cleanup goals at a Superfund site and usually are not final cleanup levels.
- Used when there is no appropriate government regulation of cleanup levels.

PRG Calculator
- The PRG Calculator is a tool that allows EPA to calculate initial cleanup levels for radiation in soil, water, and air at Superfund sites.
- Uses slope factors to calculate cleanup levels based on a target cancer risk of $10^{-6}$.
- Slope factors provide cancer risk posed by lifetime exposure to specific radionuclides. Slope factors also take into account the type of exposure (inhalation, ingestion, or external) and amount of exposure. For example, a resident on a site would expect to have a different exposure level than a worker on the same site.
- Target cancer risk of $10^{-6}$ means that a person exposed to the contamination has a one in a million chance of developing cancer. (Target is based on highest estimated level of exposure. Most people will have less of a chance of developing cancer.)
- The exposure pathways calculated by the PRG calculator are shown in the diagrams below.

How does the PRG Calculator Work?
- PRG Equations
- PRG Calculation
- Slope Factors

Soil to Groundwater Exposure
- Indoor Worker: Soil Exposure
- Outdoor (or Composite) Worker: Soil Exposure
- Resident: Soil Exposure
- Tapwater Ingestion Exposure
- Fish Ingestion Exposure

Superfund Radiation Risk Assessment Calculator Training
Fact Sheets on Radionuclides Commonly Found at Superfund Sites

- Attachment B provides 2-3 page Fact Sheets on Radionuclides Commonly Found at Superfund Sites

10. Primer on Radionuclides Commonly Found at Superfund Sites

11. Americium-241

12. Cesium-137

13. Cobalt-60

14. Iodine

15. Plutonium

16. Radium

17. Radon

18. Strontium-90

19. Technecium-99

20. Thorium

21. Tritium

22. Uranium
Fact Sheets on Radionuclides Commonly Found at Superfund Sites

Similar to the 2002 booklet that is replaced by this toolkit, each of these fact sheets contains information on:

- Potential health effects of exposure to radionuclides commonly found at Superfund sites
- EPA policies for cleaning up these radionuclides
Cesium-137 Fact Sheet

EPA Facts about Cesium-137

What is cesium-137?
Radioactive cesium-137 is produced spontaneously when other radioactive materials, such as uranium and plutonium, absorb neutrons and undergo fission. Fission is the process in which the nucleus of a radionuclide splits into smaller parts. Cesium-137 is a common radionuclide produced when nuclear fission of uranium and plutonium occurs in a reactor or atomic bomb.

What are the uses of cesium-137?
Cesium-137 and its decay product, barium-137m, are used in food sterilization, including wheat, spices, flour, and potatoes. Cesium-137 is used as a wide variety of industrial instruments, such as level and thickness gages and moisture density gages. Cesium-137 is also commonly used in hospitals for diagnosis and treatment. Large sources can be used to sterilize medical equipment.

How does cesium change in the environment?
Cesium-137 decays in the environment by emitting beta particles. As noted above, cesium-137 decays to a short-lived decay product, barium-137m. The latter isotope emits gamma radiation of moderate energy, which further decays to a stable form of barium. The time required for a radioactive substance to lose 50 percent of its radioactivity by decay is known as the half-life. Cesium-137 is significant because of its prevalence, relatively long half life (30 years), and its potential effects on human health. Barium-137, the daughter product of cesium-137 decay, has a half-life of 2.6 minutes.

How are people exposed to cesium-137?
People may be exposed externally to gamma radiation emitted by cesium-137 decay products if very high doses are received, skin burns can result. Gamma photons emitted from the barium decay product, barium-137m, can pass through the human body, delivering radiation exposure to internal tissue and organs. People may also be exposed internally if they swallow or inhale cesium-137.

Large amounts of cesium-137 were produced during atmospheric nuclear weapons tests conducted in the 1950s and 1960s. As a result of atmospheric testing and atmospheric fallout, this cesium was dispersed and deposited worldwide.

Sources of exposure from cesium-137 include fallout from previous nuclear weapons testing, soil and waste materials at radioactively contaminated sites, radioactive waste associated with operation of nuclear reactors, spent fuel reprocessing plants, and nuclear accidents such as Chernobyl and Fukushima. Cesium-137 is also a component of low-level radioactive waste at hospitals, radioactive source manufacturing, and research facilities.

How does cesium-137 get into the body?
Cesium-137 can enter the body when it is inhaled, ingested, or absorbed through the skin. After radioactive cesium is ingested, it is distributed fairly uniformly throughout the body’s soft tissues. Slightly higher concentrations are found in muscle, slightly lower concentrations are found in bone and fat. Cesium-137 remains in the body for a relatively short time. It is eliminated more rapidly by infants and children than by adults.

Is there a medical test to determine exposure to cesium-137?
Generally, levels of cesium in the body are inferred from measurements of urine samples using direct gamma spectrometry. Because of the presence of the gamma-emitting barium daughter product, a technique called whole-body counting may also be used; this test relies on detection of gamma photon energy. Skin contamination can be measured directly using a variety of portable instruments. Other techniques that may be used include collecting blood or fecal samples, then measuring the level of cesium.

How can cesium-137 affect people’s health?
Based on experimental radiation in laboratory radiation and human epidemiology, exposure to radiation from cesium-137 can cause cancer. Great Britain’s National Radiological Protection Board (NRPB) predicts that the radiation would be up to 1,000 additional cancers over the next 70 years among the population in Western Europe exposed to fallout from the accident at Chernobyl.

The magnitude of the health risk would depend on exposure conditions for scenarios involving nuclear accidents or waste materials, such as:
- Types of radioactivity encountered,
- Nature of exposure, and
- Length of exposure.

What recommendations has the U.S. Environmental Protection Agency made to protect human health?
Please note that the information in this section is intended to recommendations are made to protect human health. EPA has made recommendations to protect human health at Superfund sites (the 10^6 to 10^8 cancer risk range), which cover all radionuclides including cesium-137, are summarized in the fact sheet “Prevent on Radionuclides Commonly Found at Superfund Sites.”

EPA has established a Maximum Contaminant Level (MCL) of 4 milligrams per year for beta particle and photon radioactivity from man-made radionuclides in drinking water. Cesium-137 would be covered under this MCL. The average concentration of cesium-137, which is assumed to yield 4 milligrams per year, is 200 picocuries per liter (pCi/L). If other radionuclides that emit beta particles and photon radioactivity are present in addition to cesium-137, the sum of the annual dose from all the radionuclides cannot exceed 4 milligrams per year.

For more information about EPA addresses cesium-137 at Superfund sites:
- Contact your State’s Office of EPA. (202) 586-7500 or visit: http://www.epa.gov/superfund/cesium-137.html

Superfund Radiation Risk Assessment Calculator Training

United States Environmental Protection Agency
Show Video

◆ Quick primer of material we have covered
Radiation Risk Assessment Calculator Training

Section 3 -- PRG Calculator
PRG Outline

• PRGs Background
• Development Approach in CERCLA
• Calculator Walkthrough
  – Scenarios
  – Inputs
  – Outputs
About PRG Calculator

“The Radionuclide PRG calculator is part of a continuing effort by EPA’s Office of Superfund Remediation and Technology Innovation (OSRTI) to provide updated guidance for addressing radioactively contaminated sites consistent with EPA’s guidance for addressing chemically contaminated sites, except to account for the technical differences between radionuclides and chemicals.”
PRGs Background

• Preliminary Remediation Goals for radionuclides
• Two general sources
  – Concentrations based on ARARs. Often the determining factors in establishing cleanup levels at CERCLA sites.
  – Risk-based, site-specific concentrations, derived from equations combining standardized exposure assumptions with EPA toxicity data.
    • Use standard equations when ARARs are not available or are not sufficiently protective.
Site-specific Data

- PRGs can be calculated generically (w/out site-specific info).
- Then can be recalculated using site-specific data.
- Generic PRGs considered to be protective for humans, incl. the most sensitive groups.
Use in Site Assessment

• PRGs are not de-facto cleanup standards and should not be applied as such.

• Use for site-screening and as initial cleanup goals when applicable.
  – Role in site-screening: help identify areas, contaminants, and conditions that do not require further attention.
  – Initial cleanup goals provide long-term targets to use during analysis of remedial alternatives.
Use in Site Assessment (cont.)

- At site where contaminant conc. fall below PRGs, no further action or study is warranted.
- Conc. above PRGs do not automatically trigger a “dirty” designation or response action.
- Specific for individual chemicals for specific medium and land use combinations at sites.
Carcinogenicity

- PRGs calculated for risk-based carcinogenicity of the analytes.
- Uranium is the only radionuclide for which chemical toxicity is comparable or greater than the radiotoxicity.
  - An RfD has been established for chemical kidney toxicity.
  - Use EPA Superfund RSL calculator to develop uranium PRG based on HI, use PRG calculators for $10^{-6}$ cancer risk PRG.
Expression

• Quantities expressed in units of activity (e.g. pCi) and units of mass (e.g. mg).
  – Typically units of activity are used to quantify the concentration of radioactive material in soil because carcinogenic risks of exposure in rad soils are more related to the decay rate than to its mass.
  – Mass is provided to help evaluate the efficacy of remediation technologies
• Do not address non-human health endpoints such as ecological impacts.
PRG Calculator

- The PRG calculator establishes PRG concentrations for each radionuclide, as if it were the only radionuclide present.
- Cancer risk from all radiological and non-radiological contaminants should be summed to provide risk estimates to people exposed to both types of carcinogenic contaminants.
CERCLA Risk and Dose Calculators

Human Health - Radiological

Cancer risk ($1 \times 10^{-6}$)
- PRG (soil, water and air) 2002
- BPRG (inside buildings) 2007
- SPRG (outside surfaces) 2009

Dose (millirem per year)
- DCC (soil, water and air) 2004
- BDCC (inside buildings) 2010
- SDCC (outside surfaces) 2010

Human Health - Chemical
- RSL (soil, water, and air) 2008
Developmental Approach

• Identify PRGs at scoping.
• Create conceptual site model
• Modify PRGs as needed at end of RI or during FS based on site-specific info from baseline risk assessment.
• Select remediation levels in ROD.
Development Approach – Conceptual Site Model

- Exposure pathways of concern and site conditions must match screening level assumptions.

- Developing CSM is necessary to identify:
  - Likely contaminant source areas
  - Exposure pathways
  - Potential receptors
Development Approach – Conceptual Site Model (cont.)

- Info from CSM can also be used to determine or assist with:
  - Applicability of screening levels at site
  - Prioritizing multiple sites within a facility or exposure units
  - Setting dose-based detection limits for contaminants of potential concern (COPCs)
  - Focusing future dose assessment efforts
Development Approach – Conceptual Site Model (cont.)

- Final CSM represents linkages among:
  - Contaminant sources
  - Release mechanisms
  - Exposure pathways
  - Routes and receptors

- CSM should address following questions:
  - Are there potential ecological concerns?
  - Is there potential for land use other than those covered by PRG levels?
  - Are there other likely human exposure pathways that were not considered in development of PRG levels?
  - Are there unusual site conditions?
Example Conceptual Site Model – Overview of Contaminant Migration

FIGURE 1: CONCEPTUAL SITE MODEL

- Wind Rose
- State Game Lands
- River
- Precipitation
- Dust & Particulates
- Waste Pile
- Waste Lagoon
- Schools
- Town
- Hospital
- Sewage Plant Outfall
- Aquifer

- Grazing Land
- Stock Tank
- Irrigation
- Cropland
- Pesticides
- Herbicides
- Soil Gas
- Leachate
- Residential Wells
- Drums Dump
- Gas Vapors
- Water Plant Intake

Superfund Radiation Risk Assessment Calculator Training
Example Conceptual Site Model for PRG and DCC

Conceptual Site Model of Quantified Exposure Pathways for radionuclide PRGs. Black lines are direct exposure routes. Black dashed lines are direct and indirect exposure routes. Red lines are indirect exposure routes.

* Poultry consists of chicken, turkey, or duck. Meat consists of prime, beef, goat, and sheep. Milk consists of cow, goat, and sheep.
Calculator Walkthrough

• Overview
  – Select scenario
  – Select PRG type
  – Select units
  – Select isotopes of interest

• Scenarios

• Site-specific considerations

• PRG Output Options
PRG Calculator Overview

Slope Factors

PRG Calculation

PRG Equations

Resident

Construction Worker

Outdoor Worker

Indoor Worker

Recreator

Farmer

Soil
- ingestion
- inhalation
- external
- consumption of produce

Tap Water
- ingestion
- inhalation
- immersion
- consumption of produce

Fish
- consumption

Air
- inhalation
- submersion

Soil Screening Levels
(for protection of groundwater)

Soil/Sediment
- ingestion
- inhalation
- external
- consumption of produce

Surface Water
- ingestion
- immersion

Air
- inhalation
- submersion

Biota
- land game
- fowl
- poultry
- eggs
- beef
- milk
- swine
- fish
- goat
- goat milk
- sheep
- sheep milk

EPA United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
PRG Calculator Inputs

Using the PRG Calculator

Select Scenario
- Resident
- Composite Worker
- Outdoor Worker
- Indoor Worker
- Construction Worker - Standard Unpaved Road Vehicle Traffic (Site-specific only)
- Construction Worker - Wind Erosion and Other Construction Activities (Site-specific only)
- Recreator (Site-specific only)
- Farmer
- Soil to Groundwater

Select Risk Output:
- No
- Yes

Select Media:
- Soil
- Air
- 2-D External Exposure
- Tap Water
- Fish

Select PRG type
- Defaults
- Site-specific

Select Units
- pCi
- Bq

Show Individual Produce PRG Output:
- No
- Yes

Select Individual Isotopes

Complete List
- Ac-223
- Ac-224
- Ac-225
- Ac-226
- Ac-227
- Ac-228
- Ac-230
- Ac-231
- Ac-232
- Ac-233

Selected
- Am-241
- Cs-137
- Ra-226
- Tc-99

Common Isotopes
- I-131
- Pu-238
- Pu-239
- Pu-240
- Ra-228
- Rn-220
- Rn-222
- Sr-90
- Th-228
- Th-230

Or Select All
- ALL

PRG output options:
- Assume secular equilibrium throughout chain (no decay)
- Provide results for progeny throughout chain (with decay)
- No progeny included (with decay)

Show Individual Daughter Contributions:
- No
- Yes

Retrieve
Select scenario

• Exposure scenario affects allowed toxicity levels based on length, frequency, and intensity of exposure.

• Scenarios
  – Resident
  – Composite worker
  – Outdoor worker
  – Indoor worker
  – Construction Worker - Standard Unpaved Road Vehicle Traffic (Site-specific only)
  – Construction Worker - Wind Erosion and Other Construction Activities (Site-specific only)
  – Recreator (Site-specific only)
  – Farmer
  – Soil to Groundwater
Select PRG Type, Units, Isotopes

- Use default site parameters
- Enter site-specific parameters
  - Select chemical info type: database hierarchy defaults or user-provided.
- Select units of activity: pCi/g or Bq/g
- Select isotopes of interest
Calculator Site-Specific Inputs

Resident
Exposure to Air

Inhalation and External Exposure

Air Inhalation

\[ PRG_{\text{res-air-inh-decay}} \left( \frac{pCi}{m^3} \right) = \frac{TR \times t_r \left( \frac{1}{yr} \right) \times \left( \frac{1}{yr} \right)}{(1-e^{-\lambda t}) \times SF \left( \frac{\text{risk}}{\text{pCi}} \right) \times IFA_{r-adj} \left( 181,000 \ m^3 \right)} \]

where:

\[ IFA_{r-adj} \left( 181,000 \ m^3 \right) = \left( \frac{360 \ \text{day}}{\text{yr}} \right) \times ED_{r-c} \left( \frac{6 \ \text{yr}}{\text{day}} \right) \times ET_{r-c} \left( \frac{24 \ \text{hr}}{\text{day}} \right) \times \left( \frac{1 \ \text{day}}{24 \ \text{hours}} \right) \times IRA_{r-c} \left( \frac{10 \ m^3}{\text{day}} \right) \]

\[ = \left( \frac{360 \ \text{day}}{\text{yr}} \right) \times ED_{r-c} \left( \frac{20 \ \text{days}}{\text{yr}} \right) \times ET_{r-c} \left( \frac{24 \ \text{hr}}{\text{day}} \right) \times \left( \frac{1 \ \text{day}}{24 \ \text{hours}} \right) \times IRA_{r-c} \left( \frac{20 \ m^3}{\text{day}} \right) \]

Air Inhalation (without decay)

Air Submersion

Air Submersion (without decay)

Air Total

Air Total (without decay)
### Calculator Site-Specific Inputs

| Blue fields are not user-changeable. |
| Values determined by other inputs. |
| Ex: IRA<sub>r-adj</sub> depends on IRA<sub>r-a</sub>, IRA<sub>r-c</sub>, ED<sub>r-a</sub>, and ED<sub>r-c</sub> |

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure duration - resident yr</td>
<td>26</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure duration - resident adult yr</td>
<td>20</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure duration - resident child yr</td>
<td>6</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure frequency - resident day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure frequency - resident adult day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure frequency - resident child day/yr</td>
<td>350</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure time - resident hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure time - resident adult hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure time - resident child hr</td>
<td>24</td>
</tr>
<tr>
<td>IRA&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Inhalation rate - resident adult m&lt;sup&gt;2&lt;/sup&gt;/day</td>
<td>1.0</td>
</tr>
<tr>
<td>IRA&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Inhalation rate - resident child m&lt;sup&gt;2&lt;/sup&gt;/day</td>
<td>10</td>
</tr>
<tr>
<td>IFA&lt;sub&gt;r-adj&lt;/sub&gt;</td>
<td>Age-adjusted inhalation factor m&lt;sup&gt;3&lt;/sup&gt;</td>
<td>16100</td>
</tr>
<tr>
<td>GSF&lt;sub&gt;a&lt;/sub&gt;</td>
<td>Gamma shielding factor - air</td>
<td>1.0</td>
</tr>
<tr>
<td>TR</td>
<td>Target cancer risk</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>
Residential Scenario

• The resident spends most, if not all, of the day at home except for the hours spent at work.
• The activities for this receptor involve typical homemaking chores (cooking, cleaning, and laundering) as well as gardening.
• Adults and children exhibit different ingestion rates for soil and produce. The equations account for age adjustment.
  – For example, the child resident is assumed to ingest 200 mg per day while the adult ingests 100 mg per day.
Residential Exposure Pathways

- Ambient air
- Tap water
- Soil
- 2D direct external exposure
- Soil to groundwater
- Fish
Resident Common Parameters

- These are used in most resident equations. Changes here get carried to other areas.

### Parameters Common to all Exposure Route Equations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure duration - resident yr</td>
<td>26</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure duration - resident adult yr</td>
<td>20</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure duration - resident child yr</td>
<td>6</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure duration - resident yr</td>
<td>350</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure duration - resident adult yr</td>
<td>24</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure duration - resident child yr</td>
<td>24</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure frequency - resident day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure frequency - resident adult day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure frequency - resident child day/yr</td>
<td>350</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure time - resident hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r-a&lt;/sub&gt;</td>
<td>Exposure time - resident adult hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r-c&lt;/sub&gt;</td>
<td>Exposure time - resident child hr</td>
<td>24</td>
</tr>
<tr>
<td>( t_r )</td>
<td>Time - resident yr</td>
<td>26</td>
</tr>
<tr>
<td>TR</td>
<td>Target cancer risk unitless</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

EPA United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
Residential Ambient Air

• Two sets of equations
  – With half-life decay function – contaminants in air are not being replenished (e.g. contaminated settled dust from a previous release that is being resuspended)
  – Without half-life decay function – contaminants in air have a continual source (e.g. indoor radon from radium in the soil)

• Exposure routes: inhalation, external exposure to ionizing radiation
# Residential Ambient Air SS Inputs

**Inhalation and External Exposure**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_r$</td>
<td>Exposure duration - resident yr</td>
<td>61</td>
</tr>
<tr>
<td>$ED_{r,a}$</td>
<td>Exposure duration - resident adult yr</td>
<td>55</td>
</tr>
<tr>
<td>$ED_{r,c}$</td>
<td>Exposure duration - resident child yr</td>
<td>6</td>
</tr>
<tr>
<td>$EF_r$</td>
<td>Exposure frequency day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$EF_{r,a}$</td>
<td>Exposure frequency - resident adult day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$EF_{r,c}$</td>
<td>Exposure frequency - resident child day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$ET_r$</td>
<td>Exposure time - resident hr</td>
<td>24</td>
</tr>
<tr>
<td>$ET_{r,a}$</td>
<td>Exposure time - resident adult hr</td>
<td>24</td>
</tr>
<tr>
<td>$24$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G SF_a$</td>
<td>Gamma shielding factor - air</td>
<td>1.0</td>
</tr>
<tr>
<td>$IFA_{r,adj}$</td>
<td>Age-adjusted inhalation factor m³</td>
<td>406000</td>
</tr>
<tr>
<td>$IRA_{r,a}$</td>
<td>Inhalation rate - resident adult m³/day</td>
<td>20</td>
</tr>
<tr>
<td>$IRA_{r,c}$</td>
<td>Inhalation rate - resident child m³/day</td>
<td>10</td>
</tr>
<tr>
<td>$t_r$</td>
<td>Time - resident yr</td>
<td>61</td>
</tr>
<tr>
<td>$TR$</td>
<td>Target cancer risk</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

**NOTES:**
1. $SF =$ inhalation slope factor (risk/pCi).
2. $SF_{sub} =$ submersion slope factor (risk/pCi).
3. $t_r = ED_r + ED_{r,c}$
4. $\lambda =$ decay constant
Residential Tapwater

• Resident is exposed to radionuclides in tapwater delivered into the home.
• Exposure routes:
  – Ingestion
  – External Exposure - Immersion
  – Inhalation of volatiles
    • Only for radionuclides that volatilize: C-14, H-3, Ra-224, Ra-226, Ra-226+D
    • From household water uses: showering, laundering, dishwashing, etc.
• Consumption of fruits and vegetables grown on contaminated soil
Residential Tapwater

Superfund Radiation Risk Assessment Calculator Training
## Residential Tapwater SS Inputs

### Ingestion and Inhalation Exposure

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA_{r,adj}</td>
<td>(age-adjusted immersion factor - resident) hr</td>
</tr>
<tr>
<td>ED_r</td>
<td>(exposure duration - resident) yr</td>
</tr>
<tr>
<td>ED_{r,a}</td>
<td>(exposure duration - resident adult) yr</td>
</tr>
<tr>
<td>ED_{r,c}</td>
<td>(exposure duration - resident child) yr</td>
</tr>
<tr>
<td>EF_{r,a}</td>
<td>(exposure frequency - resident adult) day/yr</td>
</tr>
<tr>
<td>EF_{r,c}</td>
<td>(exposure frequency - resident child) day/yr</td>
</tr>
<tr>
<td>ET_{r,a}</td>
<td>(exposure time - resident adult) hr</td>
</tr>
<tr>
<td>ET_{r,c}</td>
<td>(exposure time - resident child) hr</td>
</tr>
<tr>
<td>EV_{r,a}</td>
<td>(bathing events per day - resident adult) event/day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_r</td>
<td>(irradiation rate) L/m^2-day</td>
</tr>
<tr>
<td>IRW_{r,a}</td>
<td>(water intake rate - resident adult) L/day</td>
</tr>
<tr>
<td>IRW_{r,c}</td>
<td>(water intake rate - resident child) L/day</td>
</tr>
<tr>
<td>K</td>
<td>(volatilization factor of Andelman) L/m^3</td>
</tr>
<tr>
<td>\lambda_{HL}</td>
<td>(soil leaching rate) 1/day</td>
</tr>
<tr>
<td>MLF</td>
<td>(produce plant mass loading factor) unitless</td>
</tr>
<tr>
<td>P</td>
<td>(area density for root zone) kg/m^2</td>
</tr>
<tr>
<td>T</td>
<td>(translocation factor) unitless</td>
</tr>
<tr>
<td>t_{a-event}</td>
<td>(duration of bathing event - adult) hr/event</td>
</tr>
<tr>
<td>t_{d}</td>
<td>(long term deposition and buildup) day</td>
</tr>
</tbody>
</table>

---

**EPA United States Environmental Protection Agency**  
Superfund Radiation Risk Assessment Calculator Training
### Residential Tapwater SS Inputs

**Ingestion and Inhalation Exposure (cont.)**

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EV_{r,c}$ (bathing events per day - resident child)</td>
<td></td>
</tr>
<tr>
<td>$F$ (irrigation period)</td>
<td>unitless</td>
</tr>
<tr>
<td>$IFA_{r,adj}$ (age-adjusted inhalation factor - resident)</td>
<td>161000 m&lt;sup&gt;3&lt;/sup&gt;</td>
</tr>
<tr>
<td>$I_{\text{f}}$ (interception fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td>$IFW_{r,adj}$ (adjusted intake factor - resident)</td>
<td>19138 L-yr/kg-day</td>
</tr>
<tr>
<td>$IRA_{r,a}$ (inhalation rate - resident adult)</td>
<td>m&lt;sup&gt;3&lt;/sup&gt;/day</td>
</tr>
<tr>
<td>$IRA_{r,c}$ (inhalation rate - resident child)</td>
<td>m&lt;sup&gt;3&lt;/sup&gt;/day</td>
</tr>
<tr>
<td>$t_{c,\text{event}}$ (duration of bathing event - child)</td>
<td>0.54 hr/event</td>
</tr>
<tr>
<td>$TR$ (target cancer risk)</td>
<td>unitless</td>
</tr>
<tr>
<td>$t_{\text{a}}$ (above ground exposure time)</td>
<td>60 day</td>
</tr>
<tr>
<td>$t_{\text{w}}$ (weathering half-life)</td>
<td>14 day</td>
</tr>
<tr>
<td>$Y_{\text{v}}$ (plant yield - wet)</td>
<td>kg/m&lt;sup&gt;2&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

**NOTES:**
1. $SF_{o}$ = oral ingestion slope factor (risk/pCi).
2. $SF_{f}$ = food ingestion slope factor (risk/pCi).
3. $SF_{i}$ = inhalation slope factor (risk/pCi).
4. $SF_{\text{imm}}$ = immersion external exposure slope factor (risk-g/pCi-yr).
5. $t_{\tau} = ED_{r} = ED_{r,c} + ED_{r,a}$
Residential Soil

• Exposure routes:
  – Incidental ingestion of soil
  – Inhalation of particles emitted from soil (wind-blown dust)
  – External exposure to ionizing radiation
  – Consumption of fruits and vegetables grown on contaminated soil
# Residential Soil SS Inputs

**Ingestion, External, Inhalation and Produce**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET_{res}</td>
<td>hr/day</td>
</tr>
<tr>
<td>ET_{res-adult}</td>
<td>hr/day</td>
</tr>
<tr>
<td>ET_{res-child}</td>
<td>hr/day</td>
</tr>
<tr>
<td>EF_{res}</td>
<td>day/yr</td>
</tr>
<tr>
<td>EF_{res-adult}</td>
<td>day/yr</td>
</tr>
<tr>
<td>EF_{res-child}</td>
<td>day/yr</td>
</tr>
<tr>
<td>ED</td>
<td>yr</td>
</tr>
<tr>
<td>CSF</td>
<td>unitless</td>
</tr>
<tr>
<td>IFA_{adj}</td>
<td>m³/day</td>
</tr>
<tr>
<td>IRS</td>
<td>mg/day</td>
</tr>
</tbody>
</table>

**NOTES:**

1. SF = soil ingestion slope factor (risk/pCi).
2. SF = inhalation slope factor (risk/pCi).
3. SF_{ext} = external exposure slope factor (risk-g/pCi-yr).
4. ED = t_{res}.
5. λ = decay constant
6. 0 ≤ CSF ≤ 1
7. Q/C_{wind} = Calculations based on site size and climatic zone. Further details on the derivation of Q/C_{wind} can be found in Appendix D
8. A, B, C = PEF region-specific dispersion constants (unitless)

---

**EPA**

United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
## Residential Soil SS Inputs

### Ingestion, External, Inhalation and Produce Exposure (cont.)

<table>
<thead>
<tr>
<th>Parameters Common to all Produce Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Produce Consumption – direct</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_{ras-a}$ (exposure duration – resident adult)</td>
<td>20 yr</td>
</tr>
<tr>
<td>$ED_{ras-c}$ (exposure duration – resident child)</td>
<td>6 yr</td>
</tr>
<tr>
<td>$EF_{ras-a}$ (exposure frequency – resident adult)</td>
<td>350 day/yr</td>
</tr>
<tr>
<td>$EF_{ras-c}$ (exposure frequency – resident child)</td>
<td>350 day/yr</td>
</tr>
<tr>
<td>$TR$ (target cancer risk)</td>
<td>1.0E-6 unitless</td>
</tr>
<tr>
<td>Temperate</td>
<td>Climate zone</td>
</tr>
<tr>
<td>Default</td>
<td>Soil type</td>
</tr>
</tbody>
</table>

*Image source: Superfund Radiation Risk Assessment Calculator Training*
### Residential Soil SS Inputs

Ingestion, External, Inhalation and Produce Exposure (cont.)

#### Select Produce Items to Include

| ![Checkmark] | Toggle All      | ![Checkmark] | Lima Beans     |
| ![Checkmark] | Apples          | ![Checkmark] | Okra           |
| ![Checkmark] | Asparagus       | ![Checkmark] | Onions         |
| ![Checkmark] | Beets           | ![Checkmark] | Peaches        |
| ![Checkmark] | Berries         | ![Checkmark] | Pears          |
| ![Checkmark] | Broccoli        | ![Checkmark] | Peas           |
| ![Checkmark] | Cabbage         | ![Checkmark] | Potatoes       |
| ![Checkmark] | Carrots         | ![Checkmark] | Pumpkin        |
| [ ]         | Cereal Grains   | [ ]           | Rice           |
| ![Checkmark] | Citrus Fruits   | ![Checkmark] | Snap Beans     |
| ![Checkmark] | Corn            | ![Checkmark] | Strawberries   |
| ![Checkmark] | Cucumbers       | ![Checkmark] | Tomatoes       |
| ![Checkmark] | Lettuce         |               |                |

Toggle intake rates: [ ] Fresh weight [ ] Cooked weight
## Residential Soil SS Inputs

### Ingestion, External, Inhalation and Produce Exposure (cont.)

#### Apples

| CF<sub>ras-apple</sub> (contaminated apple fraction) unitless | IRAP<sub>ras-c</sub> (apple ingestion rate – resident child) g/day |
| CF<sub>ras-apple</sub> (contaminated apple fraction) unitless | 72.2 |
| IFAP<sub>ras-adj</sub> (age-adjusted apple ingestion factor) g | IRAP<sub>ras-a</sub> (apple ingestion rate – resident adult) g/day |
| IFAP<sub>ras-adj</sub> (age-adjusted apple ingestion factor) g | 73.7 |
| IRAP<sub>ras-a</sub> (apple ingestion rate – resident adult) g/day | .000160 MLF<sub>apple</sub> (apple mass loading factor) unitless |

#### Asparagus

| CF<sub>ras-asparagus</sub> (contaminated asparagus fraction) unitless | IRAS<sub>ras-c</sub> (asparagus ingestion rate – resident child) g/day |
| CF<sub>ras-asparagus</sub> (contaminated asparagus fraction) unitless | 12.0 |
| IFAS<sub>ras-adj</sub> (age-adjusted asparagus ingestion factor) g | IRAS<sub>ras-a</sub> (asparagus ingestion rate – resident adult) g/day |
| IFAS<sub>ras-adj</sub> (age-adjusted asparagus ingestion factor) g | 39.3 |
| IRAS<sub>ras-a</sub> (asparagus ingestion rate – resident adult) g/day | .0000790 MLF<sub>asparagus</sub> (asparagus mass loading factor) unitless |
## Residential Soil SS Inputs

### Particulate Emission Factor

<table>
<thead>
<tr>
<th>Particulate Emission Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1359344438</td>
</tr>
<tr>
<td>93.77</td>
</tr>
<tr>
<td>16.2302</td>
</tr>
<tr>
<td>18.7762</td>
</tr>
<tr>
<td>216.108</td>
</tr>
<tr>
<td>0.194</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>4.69</td>
</tr>
<tr>
<td>11.32</td>
</tr>
</tbody>
</table>
Res 2D Direct External Exposure

• Alternate equations for external exposure solely for ionizing radiation of radionuclides in soil (no ing or inh).

• Designed to look at external exposure contamination from different area sizes.

• Area sizes considered (m$^2$):
  - 1   •  20   •  500  •  10,000
  - 2   •  50   •  1000 •  20,000
  - 5   •  100  •  2000 •  50,000
  - 10  •  200  •  5000
Res 2D Direct External Exposure Scenarios

- Infinite soil depth – “3D” model
- 1 cm soil depth
- 5 cm soil depth
- 15 cm soil depth
  - Soil depth models based on mass (pCi/g)
- Contaminant dust on ground plane.
  - Based on area, expressed in pCi/cm².
Buried Waste

PRG and DCC have option for the effects of clean soil on top of buried waste. Depth-specific gamma shielding factors (GSF₀'s) are now given for:

- Various slope and dose conversion factors (ground plane, 1 cm, 5 cm, 15 cm and infinite depth) and various soil cover depths
- Does not account for radionuclide transport (e.g., radon through the cap, radionuclide leaching to groundwater)
- Assumes cover does not degrade
- Covers of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 cm 1, 2, 3, 4, 5, 6, 8, 10 m are available.
- Receptor outside and inside buildings
Buried Waste (cont.)

**Figure 2:** Ground Plane GSF of Mono-energetic Photons with Cover Thickness 10cm through 50cm

**Figure 3:** Ground Plane GSF of Mono-energetic Photons with Cover Thickness 60cm through 100cm

**Figure 4:** Ground Plane GSF of Mono-energetic Photons versus Cover Thickness at Various Energies

**Figure 5:** GSF at 10 MeV using Various Contamination Thicknesses with Respect to Soil Cover Depth
## Residential 2D SS Inputs

### Resident Exposure to Alternate External Sources

<table>
<thead>
<tr>
<th>EDₐ (exposure duration - resident) yr</th>
<th>GSFᵢ (gamma shielding factor - indoor) unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EFᵣ (exposure frequency - resident) day/yr</th>
<th>tᵣ (time - resident) yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETᵣᵢ (exposure time - indoor resident) hr/day</th>
<th>TR (target cancer risk) unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.416</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETᵣ₀ (exposure time - outdoor resident) hr/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.752</td>
</tr>
</tbody>
</table>

### Notes:
1. Slab size for ACF in alternate external exposure equations is determined by area selected in soil section above.
2. Soil thickness for GSFᵢ in alternate external exposure equations is determined by area selected in soil section above.
3. SF<sub>ext-gp</sub>=ground plane external exposure slope factor (mrem·cm²/pCi·yr).
4. SF<sub>ext-sv</sub>=infinite soil volume external exposure slope factor (mrem·g/pCi·yr).
5. SF<sub>ext-1cm</sub>=soil volume at 1 cm external exposure slope factor (mrem·g/pCi·yr).
6. SF<sub>ext-5cm</sub>=soil volume at 5 cm external exposure slope factor (mrem·g/pCi·yr).
7. SF<sub>ext-15cm</sub>=soil volume at 15 cm external exposure slope factor (mrem·g/pCi·yr).
8. λ=decay constant
9. EDᵣ = tᵣ
Residential Soil to Groundwater

- Identifies concentrations in soil that have the potential to contaminate groundwater above risk-based concentrations (RBCs) such as PRGs or MCLs.
- Migration of contaminants from soil to groundwater can be envisioned as a two-stage process. Scenario considers both of these fate and transport mechanisms.
  - Release of contaminant from soil to soil leachate.
  - Transport of the contaminant through the underlying soil and aquifer to a receptor well.
Res Soil to GW – Soil Screening Levels

- SSLs accommodate partitioning between soil and water using Kds per guidance.
- Designed for use during early states of site evaluation when info about subsurface conditions is limited.
- Based on conservative, simplifying assumptions about release and transport of contaminants in subsurface.
- Other models from SSG, rad SSG 2000 and TBD Part 3 are available.
Steps to Calculate SSLs

- Acceptable groundwater concentration is multiplied by a dilution factor to obtain a target leachate concentration.
- Partition equation is then used to calculate the total soil concentration corresponding to this soil leachate concentration.
## Dilution Factor for Migration to Groundwater

### Dilution Attenuation Factor

\[
DAF = 1 + \left( \frac{K (\text{m yr}^{-1}) \times i (\text{m} \text{m}^{-1}) \times d (\text{m})}{L (\text{m})} \right)
\]

\[
d (\text{m}) = \left( 0.0112 \times L (\text{m}) ^{2} \right)^{0.5} + d_a (\text{m}) \times \left[ 1 - e^{-\left( \frac{L (\text{m}) \times i (\text{m} \text{m}^{-1})}{K (\text{m yr}^{-1}) \times d_a (\text{m})} \right)} \right]
\]

### Parameters

- **DAF** (dilution attenuation factor): unitless
- **K** (aquifer hydraulic conductivity): m/yr
- **L** (source length parallel to groundwater flow): m
- **d_a** (aquifer thickness): m - site-specific
- **i** (hydraulic gradient): m/m
- **I** (infiltration rate): m/yr

### Notes:

1. The dilution factor (DAF) has a default of 1 for a <= 0.5-acre source.
2. If DAF is known, enter it above. Or, to calculate DAF, enter your own site-specific values for the variables in the necessary fields above.
3. When DAF is entered or calculated, the values for the blue DAF boxes in the Migration to Groundwater sections below will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
Residential Soil to Groundwater SS Inputs – Partitioning Equation for Migration to Groundwater

Partitioning Equation for Migration to Groundwater

Method 1

$$SSL \left( \frac{pCl}{g} \right) = C_w \left( \frac{pCl}{L} \right) \times 10^{-3} \left( \frac{kg}{g} \right) \times \left[ \frac{6 \times \left( \frac{L_{water}}{L_{soil}} \right)}{d \times \left( \frac{L_{soil}}{kg} \right) - \rho_b \left( \frac{kg}{L} \right)} \right] \times \left( 1 - e^{-\lambda t} \right)$$

where:

$C_w = MCL or PRG \times DAF$

| 1 | DAF (dilution attenuation factor) unitless | 26 | t (time) yr |
| 1.5 | $\rho_b$ (dry soil bulk density) kg/L | 0.3 | $\theta_w$ (water-filled soil porosity) $L_{water}/L_{soil}$ |

NOTES:

1. The Partitioning Equation for Migration to Ground Water is used by default. To use the Mass-Limit Equation, enter values for the required parameters in the section below.

2. The dilution factor (DAF) has a default of 1 for a <= 0.5-acre source.

3. If DAF is known, enter it in the Dilution Factor section above. When DAF is entered or calculated in the section above, the value for the blue DAF box in this section will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
Residential Soil to Groundwater SS Inputs – Mass-Limit Equation for Migration to Groundwater

Mass-Limit Equation for Migration to Groundwater

\[
\text{SSL} \left( \frac{\text{PC}}{\text{g}} \right) = \frac{C_w \left( \frac{\text{PC}}{\text{L}} \right) \times \left( \frac{m}{\text{yr}} \right) \times \text{ED}_{gw} (70 \text{ yr}) \times 10^{-3} \left( \frac{\text{kg}}{\text{g}} \right) \times t \times h}{\rho_b \left( \frac{\text{kg}}{\text{L}} \right) \times d_s (m) \times \left( 1 - e^{-\lambda t} \right)}
\]

where:

- \( C_w \) = MCL or PRG \times DAF

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DAF</strong> (dilution attenuation factor) unitless</td>
<td><strong>70</strong> ED(_{gw}) (exposure duration) yr</td>
</tr>
<tr>
<td>( d_s ) (depth of source) m - site-specific</td>
<td><strong>1.5</strong> ( \rho_b ) (dry soil bulk density) kg/L</td>
</tr>
</tbody>
</table>

**NOTES:**

1. The **Partitioning Equation** for Migration to Groundwater above is used by default. To use the Mass-Limit Equation, enter values for ED, \( d_s \), and \( \rho_b \) in this section and enter a value for 1 in the **Dilution Factor** section above.

2. The dilution factor (DAF) has a default of 1 for a \(<= 0.5\)-acre source.

3. If DAF is known, enter it in the **Dilution Factor** section above. When DAF is entered or calculated in the section above, the value for the blue DAF box in this section will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
Residential Fish

- Radionuclide concentration in fish tissue consumed.
- Consumption rate for fish is not age-adjusted like the farmer scenario is.
## Residential Fish SS Inputs

### Resident Exposure to Consumption of Fish

#### Ingestion Exposure

**Fish Ingestion**

\[
PRG_{\text{res-fish-ing}} (\text{pCi/g}) = \frac{TR}{SF_{\text{fish}} \left( \text{pCi} \right) \times EF_{\text{f}} \left( \frac{350 \text{ day}}{\text{yr}} \right) \times ED_r \left(26 \text{ yr} \right) \times IRF_a \left( \frac{54 \text{ g}}{\text{day}} \right) \times CF_{\text{fish}}}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED_r (exposure duration - resident) yr</td>
<td>26</td>
</tr>
<tr>
<td>EF_f (exposure frequency - resident) day/yr</td>
<td>350</td>
</tr>
<tr>
<td>IRF_a (fish intake rate - adult) g/day</td>
<td>54</td>
</tr>
<tr>
<td>TR (time - resident) yr</td>
<td>26</td>
</tr>
<tr>
<td>TR (target cancer risk) unitless</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

**NOTES:**

1. SF_0 = food dose conversion factor (mrem/pCi). rad-specific
Composite Worker Scenario

- Combines the most protective exposure assumptions of the outdoor and indoor workers.
- Only difference from outdoor worker is that composite worker uses the more-protective exposure frequency of 250 days/year from the indoor worker scenario.
Composite Worker Scenario

COMPOSITE WORKER SOIL 2-D EXTERNAL EXPOSURE

GROUND PLANE
1 CM
5 CM
15 CM
INFINITE

United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
Composite Worker Scenario
Outdoor Worker Scenario

• Long-term receptor exposed during the workday who is a full-time employee working on-site and who spends most of the workday conducting maintenance activities outdoors.

• Activities (e.g. moderate digging, landscaping) typically involve on-site exposures to surface soils.
Outdoor Worker Scenario

- Expected to have an elevated soil ingestion rate (100 mg/day); most highly exposed receptor in the outdoor environment under commercial/industrial conditions.

- Exposure pathways:
  - Ambient air
  - Soil
  - 2D direct external exposure
### Outdoor Worker Common Parameters

#### Parameters Common to all Exposure Route Equations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_D_{ow}$ (exposure duration - outdoor worker) yr</td>
<td>25 yr</td>
</tr>
<tr>
<td>$E_F_{ow}$ (exposure frequency - outdoor worker) day/yr</td>
<td>225</td>
</tr>
<tr>
<td>$E_T_{ow}$ (exposure time - outdoor worker) hr/day</td>
<td>8</td>
</tr>
<tr>
<td>$t_{ow}$ (time - outdoor worker) yr</td>
<td>25 yr</td>
</tr>
<tr>
<td>TR (target cancer risk) unitless</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>
Outdoor Worker Ambient Air

- **Two equations:**
  - With half-life decay function for contaminant in air that is not being replenished.
  - Without half-life decay function for contaminant in air that is being replenished.

- **Exposure Pathways**
  - Inhalation
  - External exposure to contaminants in air
# Outdoor Worker Ambient Air SS Inputs – Internal and External Exposure

<table>
<thead>
<tr>
<th>ED&lt;sub&gt;ow&lt;/sub&gt; (exposure duration - outdoor worker) yr</th>
<th>IRA&lt;sub&gt;ow&lt;/sub&gt; (inhalation rate - outdoor worker) m&lt;sup&gt;3&lt;/sup&gt;/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>EF&lt;sub&gt;ow&lt;/sub&gt; (exposure frequency - outdoor worker) day/yr</td>
<td>t&lt;sub&gt;ow&lt;/sub&gt; (time - outdoor worker) yr</td>
</tr>
<tr>
<td>225</td>
<td>25</td>
</tr>
<tr>
<td>ET&lt;sub&gt;ow&lt;/sub&gt; (exposure time - outdoor worker) hr</td>
<td>TR (target cancer risk) unitless</td>
</tr>
<tr>
<td>8</td>
<td>1.0E-6</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**NOTES:**

1. $SF_\text{in}=\text{inhalation slope factor (risk/pCi), rad-specific}$
2. $SF_\text{sub}=\text{submersion slope factor (risk/pCi), rad-specific}$
3. $\lambda=\text{decay constant}$
Exposure pathways
- Incidental ingestion of soil
- Inhalation of dust particulates emitted from soil
- External exposure to ionizing radiation
### Outdoor Worker Soil SS Inputs

#### Ingestion, External, and Inhalation Exposure

<table>
<thead>
<tr>
<th>Slab size for ACF</th>
<th>IRA\textsubscript{ow} (inhalation rate - outdoor worker) m\textsuperscript{3}/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab size for ACF</td>
<td>IRA\textsubscript{ow} (inhalation rate - outdoor worker) m\textsuperscript{3}/day</td>
</tr>
<tr>
<td>Select a slab size</td>
<td>IRA\textsubscript{ow} (inhalation rate - outdoor worker) m\textsuperscript{3}/day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select a soil thickness cover layer</th>
<th>Select cover layer thickness for GSF\textsubscript{o} (gamma shielding factor - outdoor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a soil thickness cover layer</td>
<td>Select cover layer thickness for GSF\textsubscript{o} (gamma shielding factor - outdoor)</td>
</tr>
<tr>
<td>Select a soil thickness cover layer</td>
<td>Select cover layer thickness for GSF\textsubscript{o} (gamma shielding factor - outdoor)</td>
</tr>
</tbody>
</table>

| ED\textsubscript{ow} (exposure duration - outdoor worker) yr | 60 |
| ED\textsubscript{ow} (exposure duration - outdoor worker) yr | 60 |
| ED\textsubscript{ow} (exposure duration - outdoor worker) yr | 60 |

| EF\textsubscript{ow} (exposure frequency - outdoor worker) day/yr | 100 |
| EF\textsubscript{ow} (exposure frequency - outdoor worker) day/yr | 100 |
| EF\textsubscript{ow} (exposure frequency - outdoor worker) day/yr | 100 |

| ET\textsubscript{ow} (exposure time - outdoor worker) hr/day | 25 |
| ET\textsubscript{ow} (exposure time - outdoor worker) hr/day | 25 |
| ET\textsubscript{ow} (exposure time - outdoor worker) hr/day | 25 |

| t\textsubscript{ow} (time - outdoor worker) yr | 1.0E-6 |
| t\textsubscript{ow} (time - outdoor worker) yr | 1.0E-6 |
| t\textsubscript{ow} (time - outdoor worker) yr | 1.0E-6 |

| TR (target cancer risk) unitless | |
| TR (target cancer risk) unitless | |
| TR (target cancer risk) unitless | |

### NOTES:

1. SF\textsubscript{i}=inhalation slope factor (risk/pCi), rad-specific
2. SF\textsubscript{g}=ingestion slope factor (risk/pCi), rad-specific
3. SF\textsubscript{ext}=external exposure slope factor (risk-yr/pCi-g), rad-specific
4. t\textsubscript{ow}=ED\textsubscript{ow}
5. \lambda=decay constant
6. Q/C\textsubscript{wind}=calculations based on site size and climactic zone. Further details on the derivation of Q/C\textsubscript{w} can be found in Appendix D
7. A, B, C = PEF region-specific dispersion constants (unitless)
Outdoor Worker 2D Direct External Exposure

- Consider external exposure for different area sizes. Isotope-specific area correction factor (ACF) used in analysis.
- ACF is now source depth specific.
- Site scenarios
  - Infinite depth (3D)
  - 1 cm soil depth
  - 5 cm soil depth
  - 15 cm soil depth
  - Contaminated dust
Outdoor Worker 2D Direct External Exposure (cont.)

<table>
<thead>
<tr>
<th>25</th>
<th>$ED_{ow}$ (exposure duration - outdoor worker) yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>$EF_{ow}$ (exposure frequency - outdoor worker) day/yr</td>
</tr>
<tr>
<td>8</td>
<td>$ET_{ow}$ (exposure time - outdoor worker) hr</td>
</tr>
<tr>
<td>25</td>
<td>$t_{ow}$ (time - outdoor worker) yr</td>
</tr>
<tr>
<td>1.E-6</td>
<td>TR (target cancer risk) unitless</td>
</tr>
</tbody>
</table>

NOTES:
1. Slab size for ACF in alternate external exposure equations is determined by area selected in soil section above.
2. $SF_{ext,gp} =$ground plane external exposure slope factor (risk-yr/pCi-g), rad-specific
3. $SF_{ext,sv} =$infinite soil volume external exposure slope factor (risk-yr/pCi-g), rad-specific
4. $SF_{ext,1cm} =$soil volume at 1 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
5. $SF_{ext,5cm} =$soil volume at 5 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
6. $SF_{ext,15cm} =$soil volume at 15 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
7. $t_{ow}=ED_{ow}$
8. $\lambda=$decay constant
Buried Waste

- Revised PRG and DCC added option for buried waste. Depth-specific gamma shielding factors (GSFs) are now given for:
  - Various slope and dose conversion factors (ground plane, 1 cm, 5 cm, 15 cm and infinite depth) and various soil cover depths
  - Does not account for radionuclide transport (e.g., radon through the cap, radionuclide leaching to groundwater)
  - Assumes cover does not degrade
  - Covers of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 cm 1, 2, 3, 4, 5, 6, 8, 10 m are available.
Buried Waste (cont.)

Superfund Radiation Risk Assessment Calculator Training
Indoor Worker Scenario

- Long-term receptor for an indoor worker spends most, if not all, of the workday indoors. Thus, an indoor worker has no direct contact with outdoor soils.

- PRGs calculated for this receptor are expected to be protective of both workers engaged in low intensity activities (e.g. office work) and those engaged in more strenuous activity (e.g. factory or warehouse workers).
Indoor Worker Exposure Pathways

- Ambient air
- Soil
- 2D alternate external exposure
Superfund Radiation Risk Assessment Calculator Training
Superfund Radiation Risk Assessment Calculator Training
Indoor Worker Ambient Air

- Two equations:
  - With half-life decay function for contaminant in air that is not being replenished.
  - Without half-life decay function for contaminant in air that is being replenished.

- Exposure Pathways
  - Inhalation
  - External exposure to contaminants in air

<table>
<thead>
<tr>
<th>Parameters Common to all Exposure Route Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED_{iw} (exposure duration - indoor worker) yr</td>
</tr>
<tr>
<td>EF_{iw} (exposure frequency - indoor worker) day/yr</td>
</tr>
<tr>
<td>ET_{iw} (exposure time - indoor worker) hr/day</td>
</tr>
<tr>
<td>t_{iw} (time - indoor worker) yr</td>
</tr>
<tr>
<td>TR (target cancer risk) unitless</td>
</tr>
</tbody>
</table>

25
250
8
1.0E-6
### Indoor Worker Ambient Air SS Inputs – Inhalation and External Exposure

<table>
<thead>
<tr>
<th><strong>Input</strong></th>
<th><strong>Description</strong></th>
<th><strong>Value</strong></th>
<th><strong>Units</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Exposure duration - indoor worker yr</td>
<td></td>
<td>ED_{iw}</td>
</tr>
<tr>
<td>250</td>
<td>Exposure frequency - indoor worker day/yr</td>
<td></td>
<td>EF_{iw}</td>
</tr>
<tr>
<td>8</td>
<td>Exposure time - indoor worker hr</td>
<td></td>
<td>ET_{iw}</td>
</tr>
<tr>
<td>1.0</td>
<td>Gamma shielding factor - air unitless</td>
<td></td>
<td>GSF_{a}</td>
</tr>
<tr>
<td>60</td>
<td>Inhalation rate - indoor worker m³/day</td>
<td></td>
<td>IRA_{iw}</td>
</tr>
<tr>
<td>25</td>
<td>Time - indoor worker yr</td>
<td></td>
<td>t_{iw}</td>
</tr>
<tr>
<td>1.0E-6</td>
<td>Target cancer risk unitless</td>
<td></td>
<td>TR</td>
</tr>
</tbody>
</table>

**Notes:**
1. SF_{i}=inhalation slope factor (risk/pCi), rad-specific
2. SF_{sub}=submersion slope factor (risk/pCi), rad-specific
3. λ=decay constant
Indoor Worker Soil

- No direct contact with outdoor soil.
- Exposure Pathways
  - Incidental ingestion of contaminated soils incorporated into indoor dust
  - Inhalation of dust particulates emitted from soil
  - External exposure to ionizing radiation
    - Gamma rays from radionuclides in soil penetrate the building foundations and flooring.
Indoor Worker Soil

Superfund Radiation Risk Assessment Calculator Training
# Indoor Worker Soil SS Inputs

## Ingestion, External, and Inhalation Exposure

<table>
<thead>
<tr>
<th>Slab Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

### NOTES:

1. SF_{i} = inhalation slope factor (risk/pCi), rad-specific
2. SF_{g} = ingestion slope factor (risk/pCi), rad-specific
3. SF_{e,sv} = external exposure slope factor (risk-yr/pCi-g), rad-specific
4. t_{iw} = ED_{iw}
5. λ = decay constant
6. Q/C_{wind} = calculations based on site size and climactic zone. Further details on the derivation of Q/C_{w} can be found in Appendix D
7. A, B, C = PEF region-specific dispersion constants (unitless)
Indoor Worker 2D Alternate External Exposure

- Exposure to ionizing radiation (namely gamma rays) penetrating building foundation and floor.
- Gamma shielding factor (GSF) accounts for the shielding provided by the building.
  - GSF is the ratio of external gamma radiation level indoors on site to the radiation outdoors on site.
Indoor Worker 2D Alternate External Exposure

- Site scenarios
  - Infinite depth (3D)
  - 1 cm soil depth
  - 5 cm soil depth
  - 15 cm soil depth
  - Contaminated dust
### Indoor Worker 2D SS Inputs (cont.)

<table>
<thead>
<tr>
<th><strong>25</strong></th>
<th><strong>ED_{iw}</strong> (exposure duration - indoor worker) yr</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>250</strong></td>
<td><strong>EF_{iw}</strong> (exposure frequency - indoor worker) day/yr</td>
</tr>
<tr>
<td><strong>8</strong></td>
<td><strong>ET_{iw}</strong> (exposure time - indoor worker) hr</td>
</tr>
<tr>
<td><strong>0.4</strong></td>
<td><strong>GSF_{i}</strong> (gamma shielding factor - indoor) unitless</td>
</tr>
<tr>
<td><strong>25</strong></td>
<td><strong>t_{iw}</strong> (time - indoor worker) yr</td>
</tr>
<tr>
<td><strong>1.0E-6</strong></td>
<td><strong>TR</strong> (target cancer risk) unitless</td>
</tr>
</tbody>
</table>

**NOTES:**
1. Slab size for ACF in alternate external exposure equations is determined by area selected in soil section above
2. $SF_{ext-gp}$ = ground plane external exposure slope factor (risk-yr/pCi-g), rad-specific
3. $SF_{ext-sv}$ = infinite soil volume external exposure slope factor (risk-yr/pCi-g), rad-specific
4. $SF_{ext-1cm}$ = soil volume at 1 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
5. $SF_{ext-5cm}$ = soil volume at 5 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
6. $SF_{ext-15cm}$ = soil volume at 15 cm external exposure slope factor (risk-yr/pCi-g), rad-specific
7. $t_{iw} = ED_{iw}$
8. $\lambda$ = decay constant
Construction Worker
Standard Unpaved Road Vehicle Traffic (Site-specific only)

◆ This is a short-term receptor exposed during the work day working around vehicles suspending dust in the air.
◆ The construction worker is expected to have an elevated soil ingestion rate
◆ Exposure pathways
  – Incidental ingestion of soil
  – Inhalation of dust particulates emitted from soil
  – External exposure to ionizing radiation
Construction Worker
Standard Unpaved Road Vehicle Traffic (Site-specific only)
### Construction Worker

Standard Unpaved Road Vehicle Traffic (Site-specific only)

#### Parameters Common to all Exposure Route Equations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW&lt;sub&gt;cw&lt;/sub&gt; (days worked - construction worker)</td>
<td>day/wk</td>
</tr>
<tr>
<td>ED&lt;sub&gt;cw&lt;/sub&gt; (exposure duration - construction worker)</td>
<td>yr</td>
</tr>
<tr>
<td>EF&lt;sub&gt;cw&lt;/sub&gt; (exposure frequency - construction worker)</td>
<td>day/yr</td>
</tr>
<tr>
<td>ET&lt;sub&gt;cw&lt;/sub&gt; (exposure time - construction worker)</td>
<td>hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW&lt;sub&gt;cw&lt;/sub&gt; (weeks worked - construction worker)</td>
<td>wk/yr</td>
</tr>
<tr>
<td>t&lt;sub&gt;cw&lt;/sub&gt; (time - construction worker)</td>
<td>yr</td>
</tr>
<tr>
<td>TR (target cancer risk)</td>
<td>unitless</td>
</tr>
</tbody>
</table>

EPA
Superfund Radiation Risk Assessment Calculator Training
### Construction Worker

**Standard Unpaved Road Vehicle Traffic (Site-specific only)**

<table>
<thead>
<tr>
<th>5</th>
<th>DW&lt;sub&gt;cw&lt;/sub&gt; (days worked - construction worker) day/wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ED&lt;sub&gt;cw&lt;/sub&gt; (exposure duration - construction worker) yr</td>
</tr>
<tr>
<td>250</td>
<td>EF&lt;sub&gt;cw&lt;/sub&gt; (exposure frequency - construction worker) day/yr</td>
</tr>
<tr>
<td>8</td>
<td>ET&lt;sub&gt;cw&lt;/sub&gt; (exposure time - construction worker) hr</td>
</tr>
<tr>
<td>50</td>
<td>EW&lt;sub&gt;cw&lt;/sub&gt; (weeks worked - construction worker) wk/yr</td>
</tr>
</tbody>
</table>

| 1 | GSF<sub>a</sub> (gamma shielding factor - air) unitless |
| 60 | IRA<sub>cw</sub> (inhalation rate - construction worker) m<sup>3</sup>/day |
| 1 | t<sub>cw</sub> (time - construction worker) yr |
| 1.0E-6 | TR (target cancer risk) unitless |

**NOTES:**
1. SF<sub>i</sub>=inhalation slope factor (risk/pCi).
2. SF<sub>sub</sub>=submersion slope factor (risk/pCi)
3. t<sub>cw</sub> = ED<sub>cw</sub>
4. λ=decay constant
## Construction Worker
### Standard Unpaved Road Vehicle Traffic (Site-specific only)

<table>
<thead>
<tr>
<th>Construction Worker</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DW&lt;sub&gt;cw&lt;/sub&gt; (days worked - construction worker)</td>
<td>5 day/wk</td>
</tr>
<tr>
<td>ED&lt;sub&gt;cw&lt;/sub&gt; (exposure duration - construction worker)</td>
<td>1 yr</td>
</tr>
<tr>
<td>EF&lt;sub&gt;cw&lt;/sub&gt; (exposure frequency - construction worker)</td>
<td>250 day/yr</td>
</tr>
<tr>
<td>ET&lt;sub&gt;cw&lt;/sub&gt; (exposure time - construction worker)</td>
<td>8 hr</td>
</tr>
<tr>
<td>EW&lt;sub&gt;cw&lt;/sub&gt; (weeks worked - construction worker)</td>
<td>50 wk/yr</td>
</tr>
<tr>
<td>t&lt;sub&gt;cw&lt;/sub&gt; (time - construction worker)</td>
<td>1 yr</td>
</tr>
<tr>
<td>TR (target cancer risk)</td>
<td>1.0E-6 unitless</td>
</tr>
</tbody>
</table>

### NOTES:
1. Slab size for ACF in alternate external exposure equations is determined by area selected in soil section above.
2. SF<sub>ext-gp</sub>=ground plane external exposure slope factor (mrem-cm²/pCi-yr).
3. SF<sub>ext-sv</sub>=infinite soil volume external exposure slope factor (mrem-g/pCi-yr).
4. SF<sub>ext-1cm</sub>=soil volume at 1 cm external exposure slope factor (mrem-g/pCi-yr).
5. SF<sub>ext-5cm</sub>=soil volume at 5 cm external exposure slope factor (mrem-g/pCi-yr).
6. SF<sub>ext-15cm</sub>=soil volume at 15 cm external exposure slope factor (mrem-g/pCi-yr).
7. λ=decay constant
8. ED<sub>r</sub> = t<sub>r</sub>
## Construction Worker

### Standard Unpaved Road Vehicle Traffic (Site-specific only)

<table>
<thead>
<tr>
<th>Slab size for ACF</th>
<th>Slab size for ACF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a slab size</td>
<td>Slab size for ACF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil thickness cover layer</th>
<th>Select cover layer thickness for GST&lt;sub&gt;0&lt;/sub&gt; (gamma shielding factor - outdoor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DW&lt;sub&gt;cw&lt;/sub&gt; (days worked - construction worker)</td>
</tr>
<tr>
<td>day/wk</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ED&lt;sub&gt;cw&lt;/sub&gt; (exposure duration - construction worker)</td>
</tr>
<tr>
<td>yr</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>EF&lt;sub&gt;cw&lt;/sub&gt; (exposure frequency - construction worker)</td>
</tr>
<tr>
<td>day/yr</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ET&lt;sub&gt;cw&lt;/sub&gt; (exposure time - construction worker)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EW&lt;sub&gt;cw&lt;/sub&gt; (weeks worked - construction worker)</th>
<th>EW&lt;sub&gt;cw&lt;/sub&gt; (weeks worked - construction worker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wk/yr</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>IRA&lt;sub&gt;cw&lt;/sub&gt; (soil inhalation rate - construction worker)</td>
</tr>
<tr>
<td>m&lt;sup&gt;3&lt;/sup&gt;/day</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>IRS&lt;sub&gt;cw&lt;/sub&gt; (soil ingestion rate - construction worker)</td>
</tr>
<tr>
<td>mg/day</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>t&lt;sub&gt;cw&lt;/sub&gt; (time - construction worker) yr</td>
</tr>
<tr>
<td>1.0E-6</td>
<td>TR (target cancer risk) unitless</td>
</tr>
</tbody>
</table>

### NOTES:

1. EF<sub>cw</sub> = freq (weeks/year) * days (days/week);
### Construction Worker (PEF)
#### Standard Unpaved Road Vehicle Traffic (Site-specific only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( W_R ) (width of road segment)</td>
<td>ft</td>
</tr>
<tr>
<td>( M_{dry} ) (road surface material moisture content under dry, uncontrolled conditions)</td>
<td>%</td>
</tr>
<tr>
<td>Number of cars</td>
<td></td>
</tr>
<tr>
<td>Number of trucks</td>
<td></td>
</tr>
<tr>
<td>Tons per car</td>
<td>tons/truck</td>
</tr>
<tr>
<td>P (Rainfall Zone)</td>
<td>(number of days with at least 0.0 cm precipitation) day/year</td>
</tr>
<tr>
<td>( s ) (road surface silt content)</td>
<td>%</td>
</tr>
<tr>
<td>( A_s / ) (acres) PEF</td>
<td></td>
</tr>
</tbody>
</table>

### Calculated Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A ) (Dispersion Constant)</td>
<td>12.9351</td>
</tr>
<tr>
<td>( L_R ) (length of road segment)</td>
<td>147.58077</td>
</tr>
<tr>
<td>( A_R ) (surface area of contaminated road segment)</td>
<td>274.21393</td>
</tr>
<tr>
<td>( B ) (Dispersion Constant)</td>
<td>5.7383</td>
</tr>
<tr>
<td>( C ) (Dispersion Constant)</td>
<td>71.7711</td>
</tr>
<tr>
<td>( F_D ) Unitless Dispersion Correction Factor</td>
<td>0.185837208</td>
</tr>
<tr>
<td>( \Sigma ) (sum of fleet vehicle km traveled)</td>
<td>km</td>
</tr>
<tr>
<td>( W ) (mean vehicle weight)</td>
<td>tons</td>
</tr>
<tr>
<td>Distance (road length)</td>
<td>km/day</td>
</tr>
<tr>
<td>( PEF_{sc} ) (particulate emission factor)</td>
<td>m(^3)/kg</td>
</tr>
<tr>
<td>( Q/C_{cr} ) (inverse of the ratio of the 1-h. geometric mean air concentration to the emission flux along a straight road segment bisecting a square site (g/ft) g/m(^2)-s per kg/m(^3))</td>
<td></td>
</tr>
<tr>
<td>( t_c ) (duration of construction)</td>
<td>hours</td>
</tr>
<tr>
<td>( T ) (time over which traffic occurs)</td>
<td>s</td>
</tr>
</tbody>
</table>
Construction Worker (PEF)
Standard Unpaved Road Vehicle Traffic (Site-specific only)

\[
\text{PEF}_{\text{sc}} \left(\frac{m^3}{kg \cdot \text{s}}\right) = \frac{Q}{C_{\text{sr}}} \left(\frac{g}{m^2 \cdot \text{s}}\right) \times \frac{1}{P_D} \times \left[ \frac{T(s) \times A_R (m^2)}{2.6 \times \left(\frac{W(\text{tons})}{12}\right) \times \left(\frac{3}{365}\right) \times \left(\frac{365}{\text{days \ year}}\right) \times \left(\frac{\text{days}}{\text{year}}\right) \times 261.9 \times \Sigma \text{VKT}(\text{km})} \left(\frac{m^2}{\text{ft}^2}\right) \times \left(\ln A_o (\text{acre}) - B\right)^2 \right] \]

\[
\frac{D}{C_{\text{sr}}} \left(\frac{g}{m^3}\right) = A \times \exp\left[\frac{\left(\ln A_o (\text{acre}) - B\right)^2}{C}\right]
\]

\[
A_R (m^2) = L_R (\text{ft}) \times W_R (20 \text{ ft}) \times 0.092903 \left(\frac{m^2}{\text{ft}^2}\right)
\]

\[
W(\text{tons}) = \frac{\text{number of cars} \times \text{tons/car} + \text{number of trucks} \times \text{tons/truck}}{\text{total vehicles}}
\]

\[
\Sigma \text{VKT}(\text{km}) = \text{total vehicles} \times \text{distance} \left(\frac{\text{km}}{\text{day}}\right) \times \text{EW}_{\text{cw}} \left(\text{weeks}/\text{year}\right) \times \text{DW}_{\text{cw}} \left(\text{days}/\text{week}\right)
\]

\[
T(7200000 \text{ s}) = \text{ED}_{\text{cw}} (1 \text{ yr}) \times \text{EF}_{\text{cw}} \left(\frac{250 \text{ days}}{\text{year}}\right) \times \text{ET}_{\text{cw}} \left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{3600 \text{ s}}{\text{hr}}\right)
\]

\[
F_D (0.16564) = 0.1652 + \left(5.2367 / t_c\right) + \left(-9.6318 / t_c^2\right)
\]

\[
t_c (8400 \text{ hr}) = \text{ED}_{\text{cw}} (1 \text{ yr}) \times \text{EW}_{\text{cw}} \left(\frac{60 \text{ wks}}{\text{year}}\right) \times \left(\frac{7 \text{ days}}{\text{week}}\right) \times \left(\frac{24 \text{ hrs}}{\text{day}}\right)
\]
Construction Worker
Wind Erosion and Other Construction Activities (Site-specific only)

◆ This is a short-term receptor exposed during the work day working around heavy machinery suspending dust in the air.

◆ The construction worker is expected to have an elevated soil ingestion rate

◆ Exposure pathways
  – Incidental ingestion of soil
  – Inhalation of dust particulates emitted from soil
  – External exposure to ionizing radiation
Construction Worker

Wind Erosion and Other Construction Activities (Site-specific only)
### Construction Worker (PEF)

#### Wind Erosion and Other Construction Activities (Site-specific only)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{c\text{-doz}}$</td>
<td>Areal extent of dozing (acres)</td>
<td></td>
</tr>
<tr>
<td>$A_{c\text{-excav}}$</td>
<td>Area of excavation site (m²)</td>
<td></td>
</tr>
<tr>
<td>$A_{c\text{-grade}}$</td>
<td>Areal extent of grading (acres)</td>
<td></td>
</tr>
<tr>
<td>$A_{c\text{-til}}$</td>
<td>Areal extent of tilling (acres)</td>
<td></td>
</tr>
<tr>
<td>$B_i$</td>
<td>Dozing blade length (m)</td>
<td></td>
</tr>
<tr>
<td>$B_i$</td>
<td>Grading blade length (m)</td>
<td></td>
</tr>
<tr>
<td>$M_{m\text{-doz}}$</td>
<td>Gravimetric soil moisture content (%)</td>
<td>7.9</td>
</tr>
<tr>
<td>$M_{m\text{-excav}}$</td>
<td>Gravimetric soil moisture content (%)</td>
<td>12</td>
</tr>
<tr>
<td>$N_{x\text{-dump}}$</td>
<td>Number of times soil is dumped</td>
<td>2</td>
</tr>
<tr>
<td>$N_{x\text{-till}}$</td>
<td>Number of times soil is tilled</td>
<td>2</td>
</tr>
<tr>
<td>$N_{x\text{-doz}}$</td>
<td>Number of times site was dozed</td>
<td></td>
</tr>
<tr>
<td>$N_{x\text{-grade}}$</td>
<td>Number of times site was graded</td>
<td></td>
</tr>
<tr>
<td>$S_{doz}$</td>
<td>Dozing speed (kph)</td>
<td>11.4</td>
</tr>
<tr>
<td>$S_{grade}$</td>
<td>Dozing speed (kph)</td>
<td>11.4</td>
</tr>
<tr>
<td>$d_{excav}$</td>
<td>Average depth of excavation site (m)</td>
<td>1.68</td>
</tr>
<tr>
<td>$\rho_{\text{soil}}$</td>
<td>Density (g/cm³ - chemical-specific)</td>
<td></td>
</tr>
<tr>
<td>$A_{c\text{-}\text{PEF}}$</td>
<td>(acres) PEF</td>
<td>0.5</td>
</tr>
<tr>
<td>$s_{doz}$</td>
<td>Soil silt content (%)</td>
<td>6.9</td>
</tr>
<tr>
<td>$s_{till}$</td>
<td>Soil silt content (%)</td>
<td>18</td>
</tr>
<tr>
<td>$U_m$</td>
<td>Mean annual wind speed (m/s)</td>
<td>4.69</td>
</tr>
<tr>
<td>$U_c$</td>
<td>Equivalent threshold value (m/s)</td>
<td>11.32</td>
</tr>
<tr>
<td>$V$</td>
<td>Fraction of vegetative cover</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Dispersion Constants

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.4538</td>
</tr>
<tr>
<td>$A_{\text{surf}}$</td>
<td>2023.43</td>
</tr>
<tr>
<td>B</td>
<td>17.5660</td>
</tr>
<tr>
<td>C</td>
<td>189.0426</td>
</tr>
</tbody>
</table>

#### Unitless Dispersion Correction Factor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_D$</td>
<td>0.185837208</td>
</tr>
</tbody>
</table>

#### Dust Emissions

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{till}$</td>
<td>51288.84717</td>
</tr>
<tr>
<td>$M_{c\text{excav}}$</td>
<td>14.31407</td>
</tr>
<tr>
<td>$M_{till}$</td>
<td>14.31407</td>
</tr>
<tr>
<td>$M_{\text{doz}}$</td>
<td>14.31407</td>
</tr>
<tr>
<td>$M_{\text{grade}}$</td>
<td>14.31407</td>
</tr>
<tr>
<td>$M_{\text{till}}$</td>
<td>14.31407</td>
</tr>
</tbody>
</table>

#### Other Parameters

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma K T_{\text{doz}}$</td>
<td>8400</td>
</tr>
<tr>
<td>$\Sigma K T_{\text{grade}}$</td>
<td>720000</td>
</tr>
<tr>
<td>$P(x)$</td>
<td>0.194</td>
</tr>
<tr>
<td>$\text{PEF}_{\text{tr}}$</td>
<td></td>
</tr>
<tr>
<td>$\text{Q/C}_{\text{tr}}$</td>
<td></td>
</tr>
</tbody>
</table>
Construction Worker (PEF)
Wind Erosion and Other Construction Activities (Site-specific only)

\[
\text{PEF}_{sc} = \left( \frac{n_{sc}}{k_{sc}} \right) = \frac{Q}{C_{sa}} \left[ \left( \frac{g}{m^2 \cdot s} \right) \right] \times \frac{1}{F_{D}} \times \frac{1}{<J_s> \left( \frac{g}{m^2 \cdot s} \right)}
\]

where \[
\frac{Q}{C_{sa}} \left[ \left( \frac{g}{m^2 \cdot s} \right) \right] = A \times \exp \left[ \frac{\ln A_c (acres) + B}{c} \right]
\]

\[
<J_s> \left( \frac{g}{m^2 \cdot s} \right) = \frac{N_{wind} (g) + N_{excav} (g) + M_{doz} (g) + M_{grades} (g) + M_{hill} (g)}{A_{surf} (m^2) \times T (c)}
\]

\[
M_{w,wind} (g) = 0.036 \times (1 - V) \times \left[ \frac{U_m (m/s)}{U_l (m/s)} \right] \times F (x) \times A_{surf} (m^2) \times ED (yr) \times 8760 \text{ (hr)} \times 10 \text{ (yr)}
\]

\[
M_{excav} (g) = 0.35 \times 0.0016 \times \left( \frac{M_d (g)}{A_{surf} (m^2)} \right)^{1.1} \times (1 - V) \times P_{sol} \left( \frac{M_d (g)}{A_{surf} (m^2)} \right) \times \frac{d_{excav} (m)}{N_{A_d} \times d_{dump} \times 1000 \text{ (g/kg)}}
\]

\[
M_{doz} (g) = 0.75 \times (1 - V) \times \left( \frac{S_{doz} (acres)}{M_d (g)} \times \frac{1}{A_{surf} (m^2)} \right) \times \frac{H (km)}{1000 \text{ (g/kg)}}
\]

\[
M_{grades} (g) = 0.5 \times 0.0056 \times \left( \frac{S_{grade} (km/hr)}{S_{doz} (km/hr)} \right) \times \frac{1}{10 (acres)} \times \frac{1}{1000 \text{ (g/kg)}}
\]

\[
M_{hill} (g) = 1.1 \times \left( \frac{1}{1000 \text{ (g/kg)}} \right) \times \left( \frac{H (km)}{S_{grade} (km/hr)} \right) \times \frac{1}{1000 \text{ (g/kg)}}
\]

\[
T (s) = ED_{cw} (1 \text{ yr}) \times EF_{cw} \left( \frac{260 \text{ days}}{\text{ year}} \right) \times ET_{cw} (8 \text{ hrs/yr}) \times \left( \frac{3600 \text{ s}}{1 \text{ hr}} \right)
\]

\[
F_{D} (0.19504) = 0.1852 + \left( \frac{5.3857 \text{ ft/c}}{1 \text{ c}} \right) + \left( \frac{9.6318 \text{ s/hr}}{1 \text{ c}} \right)
\]

\[
\frac{1}{c} (6400 \text{ hr}) = ED_{cw} (1 \text{ yr}) \times EW_{cw} \left( \frac{25 \text{ wks}}{1 \text{ year}} \right) \times \left( \frac{7 \text{ days}}{1 \text{ week}} \right) \times \left( \frac{24 \text{ hrs}}{1 \text{ day}} \right)
\]
Recreator Scenario

- Extension of residential scenario.
- There are no default exposure parameters.
- Age-adjusted for change in intake as the receptor ages.
- Main pathways: soil, water, wild game, air
Recreator Common Parameters

<table>
<thead>
<tr>
<th>Parameters Common to all Exposure Route Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_{rec}$ (exposure duration - recreator) yr</td>
</tr>
<tr>
<td>$ED_{rec-a}$ (exposure duration - recreator adult) yr</td>
</tr>
<tr>
<td>$ED_{rec-c}$ (exposure duration - recreator child) yr</td>
</tr>
<tr>
<td>$EF_{rec}$ (exposure frequency - recreator) day/yr</td>
</tr>
<tr>
<td>$EF_{rec-a}$ (exposure frequency - recreator adult) day/yr</td>
</tr>
<tr>
<td>$EF_{rec-c}$ (exposure frequency - recreator child) day/yr</td>
</tr>
<tr>
<td>$ET_{rec}$ (exposure time - recreator) hr</td>
</tr>
<tr>
<td>$ET_{rec-a}$ (exposure time - recreator adult) hr</td>
</tr>
<tr>
<td>$ET_{rec-c}$ (exposure time - recreator child) hr</td>
</tr>
<tr>
<td>$t_{rec}$ (time - recreator) yr</td>
</tr>
<tr>
<td>$1.0E-6$</td>
</tr>
<tr>
<td>$TR$ (target cancer risk) unitless</td>
</tr>
</tbody>
</table>

**NOTES:** Changes in these parameters will be copied down to all the media containers, however you may change each media value independently as well in the fields below.
Recreator Soil

- Exposure pathways
  - Incidental ingestion of soil
  - Inhalation of particulates emitted from soil
  - External exposure to ionizing radiation
  - Consumption of game
Recreator Surface Water

- Exposure pathways
  - Incidental ingestion of water
  - Inhalation of vapors NOT addressed
  - External exposure to ionizing radiation
  - Consumption of game
Recreator SS Inputs for Soil

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Select a slab size</strong></td>
<td>Slab size for ACF</td>
</tr>
<tr>
<td><strong>Select a soil thickness cover layer</strong></td>
<td>Select cover layer thickness for GSF&lt;sub&gt;o&lt;/sub&gt; (gamma shielding factor - outdoor)</td>
</tr>
</tbody>
</table>

| **ED<sub>rec</sub>** (exposure duration - recreator) yr |                      |
| **ED<sub>rec-ad</sub>** (exposure duration - recreator adult) yr |                      |
| **ED<sub>rec-ch</sub>** (exposure duration - recreator child) yr |                      |
| **EF<sub>rec</sub>** (exposure frequency - recreator) day/yr |                      |
| **EF<sub>rec-ad</sub>** (exposure frequency - recreator adult) day/yr |                      |
| **EF<sub>rec-ch</sub>** (exposure frequency - recreator child) day/yr |                      |
| **ET<sub>rec</sub>** (exposure time - recreator) hr/day |                      |
| **ET<sub>rec-ad</sub>** (exposure time - recreator adult) hr/day |                      |

**NOTES:**
1. SF<sub>o</sub> = oral ingestion dose conversion factor (risk/pCi).
2. SF<sub>i</sub> = inhalation slope factor (risk/pCi).
3. SF<sub>ext-sv</sub> = external exposure slope factor (risk-g/pCi-yr).
4. ED<sub>rec</sub> = t<sub>rec</sub>
# Recreator SS Inputs for Air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_{rec}$</td>
<td>exposure duration - recreator yr</td>
</tr>
<tr>
<td>$ED_{rec-a}$</td>
<td>exposure duration - recreator adult yr</td>
</tr>
<tr>
<td>$ED_{rec-c}$</td>
<td>exposure duration - recreator child yr</td>
</tr>
<tr>
<td>$EF_{rec}$</td>
<td>exposure frequency - recreator day/yr</td>
</tr>
<tr>
<td>$EF_{rec-a}$</td>
<td>exposure frequency - recreator adult day/yr</td>
</tr>
<tr>
<td>$EF_{rec-c}$</td>
<td>exposure frequency - recreator child day/yr</td>
</tr>
<tr>
<td>$ET_{rec}$</td>
<td>exposure time - recreator hr</td>
</tr>
<tr>
<td>$ET_{rec-a}$</td>
<td>exposure time - recreator adult hr</td>
</tr>
<tr>
<td>$ET_{rec-c}$</td>
<td>exposure time - recreator child hr</td>
</tr>
<tr>
<td>$ET_{rec}$ (exposure time - recreator child)</td>
<td>hr</td>
</tr>
<tr>
<td>$GSF_a$ (gamma shielding factor - air)</td>
<td>unitless</td>
</tr>
<tr>
<td>$IFA_{rec-a}$ (age-adjusted inhalation factor)</td>
<td>m$^3$</td>
</tr>
<tr>
<td>$IRA_{rec-a}$ (inhalation rate - recreator adult)</td>
<td>m$^3$/day</td>
</tr>
<tr>
<td>$IRA_{rec-c}$ (inhalation rate - recreator child)</td>
<td>m$^3$/day</td>
</tr>
<tr>
<td>$t_{rec}$ (time - recreator)</td>
<td>yr</td>
</tr>
<tr>
<td>$TR$ (target cancer risk)</td>
<td>unitless</td>
</tr>
</tbody>
</table>

**NOTES:**
1. $SF_{inhalation}$ = inhalation slope factor (risk/pCi).
2. $SF_{sub}$ = submersion slope factor (risk/pCi).
3. $t_r = ED_r = ED_{rec} + ED_{rec-a}$
4. $\lambda$ = decay constant
# Recreator SS Inputs for 2-D Analysis

<table>
<thead>
<tr>
<th>ED&lt;sub&gt;rec&lt;/sub&gt;</th>
<th>Exposure duration - recreator yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF&lt;sub&gt;rec&lt;/sub&gt;</td>
<td>Exposure frequency - recreator day/yr</td>
</tr>
<tr>
<td>TR (target cancer risk)</td>
<td>unitless</td>
</tr>
<tr>
<td>ET&lt;sub&gt;rec&lt;/sub&gt;</td>
<td>Exposure time - recreator hr</td>
</tr>
</tbody>
</table>

**NOTES:**

1. Slab size for ACF in alternate external exposure equations is determined by area selected in soil section above.
2. \( SF_{ext-gp} \) = ground plane external exposure slope factor (mrem·cm²/pCi·yr).
3. \( SF_{ext-sv} \) = infinite soil volume external exposure slope factor (mrem·g/pCi·yr).
4. \( SF_{ext-1cm} \) = soil volume at 1 cm external exposure slope factor (mrem·g/pCi·yr).
5. \( SF_{ext-5cm} \) = soil volume at 5 cm external exposure slope factor (mrem·g/pCi·yr).
6. \( SF_{ext-15cm} \) = soil volume at 15 cm external exposure slope factor (mrem·g/pCi·yr).
7. \( \lambda \) = decay constant
8. \( ED_{rec} = t_{rec} \)
## Recreator SS Inputs for Surface Water

<table>
<thead>
<tr>
<th>Input in SS Calculation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( D_{\text{rec,adj}} )</td>
<td>(age-adjusted immersion factor - recreator) L</td>
</tr>
<tr>
<td>( E_D_{\text{rec}} )</td>
<td>(exposure duration - recreator) yr</td>
</tr>
<tr>
<td>( E_D_{\text{rec,a}} )</td>
<td>(exposure duration - recreator adult) yr</td>
</tr>
<tr>
<td>( E_D_{\text{rec,c}} )</td>
<td>(exposure duration - recreator child) yr</td>
</tr>
<tr>
<td>( E_F_{\text{rec,a}} )</td>
<td>(exposure frequency - recreator adult) day/yr</td>
</tr>
<tr>
<td>( E_F_{\text{rec,c}} )</td>
<td>(exposure frequency - recreator child) day/yr</td>
</tr>
<tr>
<td>( E_T_{\text{rec,a}} )</td>
<td>(exposure time - recreator adult) hr/day</td>
</tr>
<tr>
<td>( E_T_{\text{rec,c}} )</td>
<td>(exposure time - recreator child) hr/day</td>
</tr>
<tr>
<td>( E_{\text{rec,a}} )</td>
<td>(number of bathing events per day - recreator adult) event/day</td>
</tr>
<tr>
<td>( E_{\text{rec,c}} )</td>
<td>(number of bathing events per day - recreator child) event/day</td>
</tr>
<tr>
<td>( I_{\text{F,rec,adj}} )</td>
<td>(age-adjusted water intake rate - recreator) L</td>
</tr>
<tr>
<td>( I_{\text{R,rec,a}} )</td>
<td>(water intake rate - recreator adult) L/hr</td>
</tr>
<tr>
<td>( I_{\text{R,rec,c}} )</td>
<td>(water intake rate - recreator child) L/hr</td>
</tr>
<tr>
<td>( T_R )</td>
<td>(target cancer risk) unitless</td>
</tr>
</tbody>
</table>

### NOTES:

1. \( S_{\text{F,c}} \) = oral ingestion slope factor (risk/pCi).
2. \( S_{\text{F,f}} \) = food ingestion slope factor (risk/pCi).
3. \( S_{\text{F,i}} \) = inhalation slope factor (risk/pCi).
4. \( E_D_{\text{rec}} = t_{\text{rec}} \)
## Recreator SS Inputs for Game

<table>
<thead>
<tr>
<th>1</th>
<th>$CF_{rec-fo}$ (fowl contaminated fraction)</th>
<th>unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$CF_{rec-go}$ (game contaminated fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td></td>
<td>$ED_{rec}$ (exposure duration - recreator)</td>
<td>yr</td>
</tr>
<tr>
<td></td>
<td>$EF_{rec}$ (exposure frequency - recreator)</td>
<td>day/yr</td>
</tr>
<tr>
<td>1</td>
<td>$f_{p-fowl}$ (fowl on-site fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>$f_{p-game}$ (land game on-site fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>$f_{s-fowl}$ (fraction of year fowl is on site)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>$f_{s-game}$ (fraction of year land game is on site)</td>
<td>unitless</td>
</tr>
<tr>
<td></td>
<td>$IRGL_{rec}$ (fowl consumption rate)</td>
<td>g/day</td>
</tr>
<tr>
<td></td>
<td>$IRGF_{rec}$ (land game consumption rate)</td>
<td>g/day</td>
</tr>
</tbody>
</table>

| 0.25 | MLF (game pasture plant mass loading factor) | unitless |
|      | $Q_{p-fowl}$ (fowl fodder intake rate) | kg/day |
|      | $Q_{p-game}$ (land game fodder intake rate) | kg/day |
|      | $Q_{s-fowl}$ (fowl soil intake rate) | kg/day |
|      | $Q_{s-game}$ (land game soil intake rate) | kg/day |
|      | $Q_{w-fowl}$ (fowl water intake rate) | kg/day |
|      | $Q_{w-game}$ (land game water intake rate) | kg/day |

| 1.0E-6 | TR (target cancer risk) | unitless |

### NOTES:
1. $SF_o$ = food ingestion slope factor (risk/pCi), rad-specific
Farm Scenario

- Extension of residential scenario.
- Evaluates direct consumption of farm products for a subsistence farmer.
- Evaluates consumption of farm products back-calculated to soil and water.
- Age-adjusted for change in intake as the receptor ages.
- Main pathways: soil and livestock consumption
Farmer Scenario

FARMER SOIL WATER

CONSUMPTION OF
BEEF & MILK & SWINE

CONSUMPTION OF
VEGETABLES & FRUITS

CONSUMPTION OF
FISH & POULTRY & EGGS

Superfund Radiation Risk
Assessment Calculator Training
Farmer Soil

• Exposure pathways
  – Incidental ingestion of soil
  – Inhalation of particulates emitted from soil
  – External exposure to ionizing radiation
  – Consumption of fruits and vegetables
    • 100% home grown
Farmer Water

• Exposure pathways
  – Incidental ingestion of water
  – Inhalation of volatiles from water
  – External exposure to ionizing radiation
  – Consumption of fruits and vegetables
    • 100% home grown
Farmer Livestock Consumption

- 100% homegrown livestock consumption
- All feed for animal products considered grown on contaminated media on site.
- Scenarios:
  - Meat (cattle, goat, sheep)
  - Milk (cow, goat, sheep)
  - Poultry (chicken, goose, turkey, duck)
  - Produce (24 categories)
  - Swine
  - Eggs
  - Fish
## Farmer SS Inputs

### Common Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED&lt;sub&gt;f&lt;/sub&gt;</td>
<td>Exposure duration - farmer</td>
<td>40</td>
</tr>
<tr>
<td>ED&lt;sub&gt;f-a&lt;/sub&gt;</td>
<td>Exposure duration - farmer adult</td>
<td>34</td>
</tr>
<tr>
<td>ED&lt;sub&gt;f-c&lt;/sub&gt;</td>
<td>Exposure duration - farmer child</td>
<td>6</td>
</tr>
<tr>
<td>EF&lt;sub&gt;f&lt;/sub&gt;</td>
<td>Exposure frequency - farmer</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;f-a&lt;/sub&gt;</td>
<td>Exposure frequency - farmer adult</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;f-c&lt;/sub&gt;</td>
<td>Exposure frequency - farmer child</td>
<td>350</td>
</tr>
<tr>
<td>ET&lt;sub&gt;f&lt;/sub&gt;</td>
<td>Exposure time - farmer</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;f-a&lt;/sub&gt;</td>
<td>Exposure time - farmer adult</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;f-c&lt;/sub&gt;</td>
<td>Exposure time - farmer child</td>
<td>24</td>
</tr>
<tr>
<td>t&lt;sub&gt;f&lt;/sub&gt;</td>
<td>Time - farmer</td>
<td>40</td>
</tr>
<tr>
<td>TR</td>
<td>Target cancer risk</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

*Note: The values represent the inputs for the Superfund Radiation Risk Assessment Calculator Training.*
## Farmer SS Inputs for Air

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_F$</td>
<td>Exposure duration - farmer yr</td>
<td>40</td>
</tr>
<tr>
<td>$ED_{Fa}$</td>
<td>Exposure duration - farmer adult yr</td>
<td>34</td>
</tr>
<tr>
<td>$ED_{Fc}$</td>
<td>Exposure duration - farmer child yr</td>
<td>6</td>
</tr>
<tr>
<td>$EF_F$</td>
<td>Exposure frequency - farmer day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$EF_{Fa}$</td>
<td>Exposure frequency - farmer adult day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$EF_{Fc}$</td>
<td>Exposure frequency - farmer child day/yr</td>
<td>350</td>
</tr>
<tr>
<td>$ET_F$</td>
<td>Exposure time - farmer hr</td>
<td>24</td>
</tr>
<tr>
<td>$ET_{Fa}$</td>
<td>Exposure time - farmer adult hr</td>
<td>24</td>
</tr>
<tr>
<td>$IFA_{adj}$</td>
<td>Age-adjusted inhalation factor - farmer</td>
<td>259000</td>
</tr>
<tr>
<td>$GSF_a$</td>
<td>Gamma shielding factor - air</td>
<td>1</td>
</tr>
<tr>
<td>$IRA_{Fa}$</td>
<td>Inhalation rate - farmer adult m³/day</td>
<td>20</td>
</tr>
<tr>
<td>$IRA_{Fc}$</td>
<td>Inhalation rate - farmer child m³/day</td>
<td>10</td>
</tr>
<tr>
<td>$t_F$</td>
<td>Time - farmer yr</td>
<td>40</td>
</tr>
<tr>
<td>$TR$</td>
<td>Target cancer risk unitless</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

### Notes:
1. $SF_F$ = Inhalation slope factor (risk/pCi).
2. $SF_{sub}$ = Submersion slope factor (risk/pCi).
3. $\lambda$ = Decay constant.

---

**Superfund Radiation Risk Assessment Calculator Training**

United States Environmental Protection Agency (EPA)
# Farmer SS Inputs for Soil

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site area</td>
<td>Site area for ACF</td>
<td></td>
</tr>
<tr>
<td>Cover layer thickness for GSF</td>
<td>Cover layer thickness for GSF</td>
<td></td>
</tr>
<tr>
<td>Exposure duration (farmer)</td>
<td>40 yr</td>
<td>$ED_{far}$</td>
</tr>
<tr>
<td>Exposure duration (farmer adult)</td>
<td>34 yr</td>
<td>$ED_{far-a}$</td>
</tr>
<tr>
<td>Exposure duration (farmer child)</td>
<td>6 yr</td>
<td>$ED_{far-c}$</td>
</tr>
<tr>
<td>Exposure frequency (farmer)</td>
<td>350 day/yr</td>
<td>$EF_{far}$</td>
</tr>
<tr>
<td>Exposure frequency (farmer adult)</td>
<td>350 day/yr</td>
<td>$EF_{far-a}$</td>
</tr>
<tr>
<td>Exposure frequency (farmer child)</td>
<td>350 day/yr</td>
<td>$EF_{far-c}$</td>
</tr>
<tr>
<td>Exposure time (farmer adult)</td>
<td>24 hr/day</td>
<td>$ET_{far-a}$</td>
</tr>
<tr>
<td>Exposure time (farmer child)</td>
<td>24 hr/day</td>
<td>$ET_{far-c}$</td>
</tr>
<tr>
<td>$ET_{far}$ (indoor exposure time fraction)</td>
<td>10.008 hr/day</td>
<td></td>
</tr>
<tr>
<td>$ET_{far-a}$ (outdoor exposure time fraction)</td>
<td>12.168 hr/day</td>
<td></td>
</tr>
<tr>
<td>$IF_{far-a}$ (age-adjusted soil inhalation factor)</td>
<td>0.4 m$^3$/day</td>
<td></td>
</tr>
<tr>
<td>$IF_{far-c}$ (age-adjusted soil ingestion factor)</td>
<td>259000 mg</td>
<td></td>
</tr>
<tr>
<td>$IR_{far-a}$ (inhalation rate - farmer adult)</td>
<td>1610000 mg</td>
<td></td>
</tr>
<tr>
<td>$IR_{far-c}$ (inhalation rate - farmer child)</td>
<td>20 m$^3$/day</td>
<td></td>
</tr>
<tr>
<td>$IR_{far}$ (inhalation rate - farmer)</td>
<td>10 m$^3$/day</td>
<td></td>
</tr>
<tr>
<td>$IS_{far-a}$ (soil ingestion rate - farmer adult)</td>
<td>100 mg/day</td>
<td></td>
</tr>
<tr>
<td>$IS_{far-c}$ (soil ingestion rate - farmer child)</td>
<td>100 mg/day</td>
<td></td>
</tr>
<tr>
<td>$IS_{far}$ (soil ingestion rate - farmer)</td>
<td>200 mg/day</td>
<td></td>
</tr>
<tr>
<td>Time (farmer)</td>
<td>40 yr</td>
<td>$t_{far}$</td>
</tr>
<tr>
<td>$TR$ (target cancer risk)</td>
<td>1.0E-6</td>
<td>unitless</td>
</tr>
</tbody>
</table>

**NOTES:**

1. $SF_s$ = soil ingestion slope factor (risk/pCi).
2. $SF_{inhal}$ = inhalation slope factor (risk/pCi).
3. $SF_{ext}$ = external exposure slope factor (risk--g/pCi--yr).
4. $EF_{far}$ = $t_{far}$
5. $\lambda$ = decay constant
6. $0 \leq GSF \leq 1$
7. $Q/C_{min}$ = calculations based on site size and climatic zone. Further details on the derivation of $Q/C_{min}$ can be found in Appendix D
8. A, B, C = PEF region-specific dispersion constants (unitless)
# Farmer SS Inputs for Beef

| Beef Consumption – back calculated to soil |
| Beef Consumption – back calculated to soil and water |
| Beef Consumption – back calculated to water |
| Beef Consumption – direct |

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF$_{far-beef}$ (beef contaminated fraction)</td>
<td>unitless</td>
<td></td>
</tr>
<tr>
<td>IFB$_{far-adj}$ (age-adjusted beef ingestion factor)</td>
<td>g</td>
<td>2202410</td>
</tr>
<tr>
<td>IRB$_{far-a}$ (beef ingestion rate – farmer adult)</td>
<td>g/day</td>
<td>178.0</td>
</tr>
<tr>
<td>IRB$_{far-c}$ (beef ingestion rate – farmer child)</td>
<td>g/day</td>
<td>40.1</td>
</tr>
<tr>
<td>f$_{a-beef}$ (animal on-site fraction)</td>
<td>unitless</td>
<td></td>
</tr>
<tr>
<td>Q$_{f-beef}$ (beef fodder intake rate)</td>
<td>kg/day</td>
<td>11.77</td>
</tr>
<tr>
<td>Q$_{s-beef}$ (beef soil intake rate)</td>
<td>kg/day</td>
<td>0.5</td>
</tr>
<tr>
<td>Q$_{w-beef}$ (beef water intake rate)</td>
<td>L/day</td>
<td>53</td>
</tr>
</tbody>
</table>

---

**Superfund Radiation Risk Assessment Calculator Training**
# Farmer SS Inputs for Produce

## Parameters Common to all Agricultural Products

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce Consumption - back calculated to soil</td>
<td></td>
</tr>
<tr>
<td>Produce Consumption - back calculated to soil and water</td>
<td></td>
</tr>
<tr>
<td>Produce Consumption - back calculated to water</td>
<td></td>
</tr>
<tr>
<td>Produce consumption - direct</td>
<td></td>
</tr>
</tbody>
</table>

### Exposure Duration

<table>
<thead>
<tr>
<th>Farmer Adult (yr)</th>
<th>Farmer Child (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>40</strong></td>
<td><strong>350</strong></td>
</tr>
<tr>
<td><strong>34</strong></td>
<td><strong>240</strong></td>
</tr>
<tr>
<td><strong>6</strong></td>
<td><strong>10950</strong></td>
</tr>
</tbody>
</table>

### Exposure Frequency

<table>
<thead>
<tr>
<th>Farmer Adult (day/yr)</th>
<th>Farmer Child (day/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>350</strong></td>
<td><strong>1.0E-6</strong></td>
</tr>
</tbody>
</table>

### Soil Leaching Rate

<table>
<thead>
<tr>
<th>λₜₑ (1/day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>0.000027</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Irrigation Rate

<table>
<thead>
<tr>
<th>Iₜ (L/m²·day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>3.62</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Target Cancer Risk

<table>
<thead>
<tr>
<th>TR (unitless)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1.0E-6</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Climate Zone

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Soil Type

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MLF_plant</strong></td>
<td></td>
</tr>
<tr>
<td><strong>0.25</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Pasture Plant Mass Loading Factor

<table>
<thead>
<tr>
<th>Pasture Plant (unitless)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MLF_plant</strong></td>
<td></td>
</tr>
<tr>
<td><strong>0.25</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Irrigation Period

<table>
<thead>
<tr>
<th>F (unitless)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>0.25</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Irrigation Fraction

<table>
<thead>
<tr>
<th>lᵣ (unitless)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>0.42</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Irrigation Time

<table>
<thead>
<tr>
<th>tᵥ (day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>60</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Long Term Deposition and Buildup

<table>
<thead>
<tr>
<th>tₑ (day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>10950</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Above Ground Exposure Time

<table>
<thead>
<tr>
<th>tᵥ (day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>14</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Weathering Half-life

<table>
<thead>
<tr>
<th>tᵮ (day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Area Density for Root Zone

<table>
<thead>
<tr>
<th>P (kg/m²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>240</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Translocation Factor

<table>
<thead>
<tr>
<th>T (unitless)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Plant Yield

<table>
<thead>
<tr>
<th>Yᵥ (kg/m²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2</strong></td>
<td></td>
</tr>
</tbody>
</table>

---

Superfund Radiation Risk Assessment Calculator Training
### Farmer SS Inputs for Produce

<table>
<thead>
<tr>
<th>Select Produce Items to Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅ Toggle All</td>
</tr>
<tr>
<td>✅ Apples</td>
</tr>
<tr>
<td>✅ Asparagus</td>
</tr>
<tr>
<td>✅ Beets</td>
</tr>
<tr>
<td>✅ Berries</td>
</tr>
<tr>
<td>✅ Broccoli</td>
</tr>
<tr>
<td>✅ Cabbage</td>
</tr>
<tr>
<td>✅ Carrots</td>
</tr>
<tr>
<td>☐ Cereal Grains</td>
</tr>
<tr>
<td>✅ Citrus Fruits</td>
</tr>
<tr>
<td>✅ Corn</td>
</tr>
<tr>
<td>✅ Cucumbers</td>
</tr>
<tr>
<td>✅ Lettuce</td>
</tr>
<tr>
<td>✅ Lima Beans</td>
</tr>
<tr>
<td>✅ Okra</td>
</tr>
<tr>
<td>✅ Onions</td>
</tr>
<tr>
<td>✅ Peaches</td>
</tr>
<tr>
<td>✅ Pears</td>
</tr>
<tr>
<td>✅ Peas</td>
</tr>
<tr>
<td>✅ Potatoes</td>
</tr>
<tr>
<td>✅ Pumpkin</td>
</tr>
<tr>
<td>☐ Rice</td>
</tr>
<tr>
<td>✅ Snap Beans</td>
</tr>
<tr>
<td>✅ Strawberries</td>
</tr>
<tr>
<td>✅ Tomatoes</td>
</tr>
</tbody>
</table>

Toggle intake rates: 🎸 Fresh weight ☐ Cooked weight
Farmer SS Inputs for Produce

### Apples
- **CF<sub>Fa-apple</sub>** (contaminated apple fraction) unitless
- **IFAP<sub>Fa-apple</sub>** (age-adjusted apple ingestion factor) g
  - 1182020
  - g
- **IRAP<sub>Fa-apple</sub>** (apple ingestion rate - farmer adult) g/day
  - 84.7
  - g/day
- **IRAP<sub>child</sub>** (apple ingestion rate - farmer child) g/day
  - 82.9
  - g/day
- **MLF<sub>apple</sub>** (apple mass loading factor) unitless
  - 0.000160

### Asparagus
- **CF<sub>Fa-asparagus</sub>** (contaminated asparagus fraction) unitless
- **IFAS<sub>Fa-asparagus</sub>** (age-adjusted asparagus ingestion factor) g
  - 492870
  - g
- **IRAS<sub>Fa-asparagus</sub>** (asparagus ingestion rate - farmer adult) g/day
  - 59.3
  - g/day
- **IRAS<sub>child</sub>** (asparagus ingestion rate - farmer child) g/day
  - 12.0
  - g/day
- **MLF<sub>asparagus</sub>** (asparagus mass loading factor) unitless
  - 0.0000790

### Beets
- **CF<sub>Fa-beet</sub>** (contaminated beet fraction) unitless
- **IFBT<sub>Fa-beet</sub>** (age-adjusted beet ingestion factor) g
  - 411600
  - g
- **IRBT<sub>Fa-beet</sub>** (beet ingestion rate - farmer adult) g/day
  - 5.9
  - g/day
- **IRBT<sub>child</sub>** (beet ingestion rate - farmer child) g/day
  - 0.000138
  - g/day
- **MLF<sub>beet</sub>** (beet mass loading factor) unitless
  - 0.000138

### Berries
- **CF<sub>Fa-berry</sub>** (contaminated berry fraction) unitless
- **IFBE<sub>Fa-berry</sub>** (age-adjusted berry ingestion factor) g
  - 471450
  - g
- **IRBE<sub>Fa-berry</sub>** (berry ingestion rate - farmer adult) g/day
  - 35.4
  - g/day
- **IRBE<sub>child</sub>** (berry ingestion rate - farmer child) g/day
  - 23.9
  - g/day
- **MLF<sub>berry</sub>** (berry mass loading factor) unitless
  - 0.000166

**EPA United States Environmental Protection Agency**

**Superfund Radiation Risk Assessment Calculator Training**
# Farmer SS Inputs for Milk

## Dairy

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
<th>Unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1$</td>
<td>$\text{CF}_{\text{far-dairy}}$ (dairy contaminated fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td>$6036590$</td>
<td>$\text{IFD}_{\text{far-adj}}$ (age-adjusted dairy ingestion factor)</td>
<td>g</td>
</tr>
<tr>
<td>$445.6$</td>
<td>$\text{IRD}_{\text{far-a}}$ (dairy ingestion rate - farmer adult)</td>
<td>g/day</td>
</tr>
<tr>
<td>$349.5$</td>
<td>$\text{IRD}_{\text{far-c}}$ (dairy ingestion rate - farmer child)</td>
<td>g/day</td>
</tr>
<tr>
<td>$1.03$</td>
<td>$\rho_m$ (density of milk)</td>
<td>kg/L</td>
</tr>
<tr>
<td>$1$</td>
<td>$f_{p-\text{dairy}}$ (animal on-site fraction)</td>
<td>unitless</td>
</tr>
<tr>
<td>$1$</td>
<td>$f_{s-\text{dairy}}$ (fraction of year animal on site)</td>
<td>unitless</td>
</tr>
<tr>
<td>$20.3$</td>
<td>$Q_{p-\text{dairy}}$ (dairy fodder intake rate)</td>
<td>kg/day</td>
</tr>
<tr>
<td>$0.4$</td>
<td>$Q_{s-\text{dairy}}$ (dairy soil intake rate)</td>
<td>kg/day</td>
</tr>
<tr>
<td>$92$</td>
<td>$Q_{w-\text{dairy}}$ (dairy water intake rate)</td>
<td>L/day</td>
</tr>
</tbody>
</table>
# Farmer SS Inputs for Swine

<table>
<thead>
<tr>
<th>Swine Consumption – back calculated to soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine Consumption – back calculated to soil and water</td>
</tr>
<tr>
<td>Swine Consumption – back calculated to water</td>
</tr>
<tr>
<td>Swine Consumption – direct</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CF&lt;sub&gt;far-swine&lt;/sub&gt; (swine contaminated fraction) unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1203860 IFSW&lt;sub&gt;far-adj&lt;/sub&gt; (age-adjusted swine ingestion factor)</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>97.9 IRSW&lt;sub&gt;far-a&lt;/sub&gt; (swine ingestion rate – farmer adult)</td>
</tr>
<tr>
<td>g/day</td>
</tr>
<tr>
<td>18.5 IRSW&lt;sub&gt;far-c&lt;/sub&gt; (swine ingestion rate – farmer child)</td>
</tr>
<tr>
<td>g/day</td>
</tr>
<tr>
<td>f&lt;sub&gt;p-swine&lt;/sub&gt; (animal on-site fraction) unitless</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f&lt;sub&gt;s-swine&lt;/sub&gt; (fraction of year animal on site) unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q&lt;sub&gt;p-swine&lt;/sub&gt; (swine fodder intake rate) kg/day</td>
</tr>
<tr>
<td>Q&lt;sub&gt;s-swine&lt;/sub&gt; (swine soil intake rate) kg/day</td>
</tr>
<tr>
<td>Q&lt;sub&gt;sw-swine&lt;/sub&gt; (swine water intake rate) L/day</td>
</tr>
</tbody>
</table>

**EPA**
United States Environmental Protection Agency
Superfund Radiation Risk Assessment Calculator Training
## Farmer SS Inputs for Egg & Poultry

| CF<sub>far-egg</sub> (egg contaminated fraction) unitless | 1 |
| CF<sub>far-poultry</sub> (poultry contaminated fraction unitless) | 1 |
| IFE<sub>far-adj</sub> (age-adjusted egg ingestion factor) g | 658455 |
| IFP<sub>far-adj</sub> (age-adjusted poultry ingestion factor) g | 1318100 |
| IRE<sub>far-adult</sub> (egg ingestion rate - farmer adult) g/day | 53.4 |
| IRE<sub>far-child</sub> (egg ingestion rate - farmer child) g/day | 10.95 |
| IRP<sub>far-adult</sub> (poultry ingestion rate - farmer adult) | 106.6 |
| IRP<sub>far-child</sub> (poultry ingestion rate - farmer child) | |
| IRP<sub>far-c</sub> (poultry ingestion rate - farmer child) | 23.6 |
| f<sub>p-poultry</sub> (animal on-site fraction) unitless | 1 |
| f<sub>s-poultry</sub> (fraction of year animal on site) unitless | 1 |
| Q<sub>p-poultry</sub> (poultry fodder intake rate) kg/day | 0.2 |
| Q<sub>s-poultry</sub> (poultry soil intake rate) kg/day | 0.022 |
| Q<sub>wa-poultry</sub> (poultry water intake rate) L/day | 0.4 |

Toggle poultry type: [Chicken] [Duck] [Turkey] [Goose]
Farmer SS Inputs for Fish

| Fish Consumption – back calculated to soil |
| Fish Consumption – back calculated to soil and water |
| Fish Consumption – back calculated to water |
| Fish Consumption – direct |

<table>
<thead>
<tr>
<th>CF_{far-fish} (fish contaminated fraction) unitless</th>
<th>IRFI_{far-a} (fish ingestion rate – farmer adult) g/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>155.4</td>
</tr>
<tr>
<td>IFFI_{far-adj} (age-adjusted fish ingestion factor) g</td>
<td>IRFI_{far-c} (fish ingestion rate – farmer child) g/day</td>
</tr>
<tr>
<td>1918140</td>
<td>32.8</td>
</tr>
</tbody>
</table>
Farmer Total Equations

Total Soil

\[
PRG_{\text{soil-f-tot}} (\text{pCi/g}) = \frac{1}{PRG_{\text{soil-f-soil}} + PRG_{\text{soil-f-soil-h}} + PRG_{\text{soil-f-soil-ext}} + PRG_{\text{soil-f-prod}} + PRG_{\text{soil-f-egg-ing}} + PRG_{\text{soil-f-poi-ing}} + PRG_{\text{soil-f-fish-ing}} + PRG_{\text{soil-f-beef-ing}} + PRG_{\text{soil-f-dair-y-ing}} + PRG_{\text{soil-f-swing}}}
\]

Total Agricultural products - back calculated to water

\[
PRG_{\text{wat-f-tot}} (\text{pCi/L}) = \frac{1}{PRG_{\text{wat-f-soil}} + PRG_{\text{wat-f-soil-h}} + PRG_{\text{wat-f-soil-ext}} + PRG_{\text{wat-f-prod}} + PRG_{\text{wat-f-egg-ing}} + PRG_{\text{wat-f-poi-ing}} + PRG_{\text{wat-f-fish-ing}} + PRG_{\text{wat-f-beef-ing}} + PRG_{\text{wat-f-dair-y-ing}} + PRG_{\text{wat-f-swing}}}
\]

Total Water

\[
PRG_{\text{water-f-tot}} (\text{nCi/y}) = \frac{1}{PRG_{\text{water-f-soil}} + PRG_{\text{water-f-soil-h}} + PRG_{\text{water-f-soil-ext}} + PRG_{\text{water-f-prod}}}
\]
Farmer Soil and Water Graph

Water PRG (pCi/L) vs. Soil PRG (pCi/g)

(Water PRG = 3.5250 pCi/L, Soil PRG = 0.0614 pCi/g)
Site-specific Factors

- Blue input fields in the calculator are variable-dependent and automatically adjusted based on site-specific inputs.
- Particular Emission Factor (PEF)
- Volatilization Factor (VF)
- Soil to Groundwater transport
- Radionuclide decay constant (lambda)
- Area Correction Factor (ACF)
- Gamma Shielding Factor (soil) $GSF_\circ$
Particulate Emission Factor

- Expresses the dispersion of particulate matter in a specific climate. Varies with weather conditions.
- Determines impact of adsorbed radionuclides on dispersed particulate matter.
- Required for calculations in soil scenarios for residential, farmer, and outdoor, indoor, and composite workers.
- Does not significantly affect most PRGs with exception of a few radionuclides.
US Climactic Zones – For Calculating PEF

Superfund Radiation Risk Assessment Calculator Training
Soil to GW Equations – Dilution Factor

• For residential soil to groundwater, the PRGs can be calculated with one of two methods:
  – Partitioning equation for migration to groundwater: employs default partitioning equation for migration. Dilution factor defaults to 1 for 0.5-acre source.
  – Mass-limit equation for migration to groundwater. Use if all the parameters needed to calculate a dilution factor are available.
Volatilization Factor

- Replaces PEF for tritium ($^3$H) assessment.
- Default value is 17 m$^3$/kg
- VF value is based on steady state model that assumes, on average, $^3$H in soil pore water and in air
Groundwater Transport – $K_D$

- $K_D$ – soil-to-water partition coefficient.
- Accounts for partitioning of contaminants in soil to groundwater migration.
- Use for farmer soil land use in fish, milk, beef, and swine exposure routes.
Radionuclide Decay Constant ($\lambda$)

- Residential air, soil, workers, and farmer soil have a decay constant term based on the half-life of the isotope.
- Make realistic PRGs by including contributions from short-lived decay products.
- Should be used to establish the actual degree of equilibrium between parent nuclide and daughters.
- Should use +D values if data is not sufficient to calculate $\lambda$. 

Superfund Radiation Risk Assessment Calculator Training
Area Correction Factor

• Infinite slab assumption – thickness of contaminated zone and its aerial extent are so large that it effectively behaves as if it were infinite in its physical dimensions.

• In practice, soil contaminated to depth > 15cm, aerial extent > 10,000 m² creates a radiation field comparable to infinite slab.
Area Correction Factor

• In most residential settings, infinite slab assumption results in an overly conservative PRG.
• ACF used to compensate and adjust source area.
• ACF is variable by isotope, source thickness and area for site-specific analysis.
• PRG calculator has 19 different site area choices. If no size is selected for finite analysis, the ACF for the most protective size is selected.
# Residential Generic Outputs

## Ambient Air

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Inhalation Slope Factor (risk/pCi)</th>
<th>Submersion External Exposure Slope Factor (risk/yr per pCi/m³)</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>2.22E-10</td>
<td>7.25E-10</td>
<td>5.54E-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halflife (years)</th>
<th>Inhalation PRG (pCi/m³)</th>
<th>External Exposure PRG (pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25E+09</td>
<td>2.80E-02</td>
<td>5.53E+01</td>
</tr>
</tbody>
</table>

## Tapwater

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Water Ingestion Slope Factor (risk/pCi)</th>
<th>Inhalation Slope Factor (risk/pCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>2.47E-11</td>
<td>2.22E-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food Ingestion Slope Factor (risk/pCi)</th>
<th>Immersion Slope Factor (risk/yr per pCi/L)</th>
<th>Halflife (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.42E-11</td>
<td>1.56E-12</td>
<td>4.57E+11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_i (1/day)</th>
<th>λ_B (1/day)</th>
<th>λ_E (1/day)</th>
<th>Wet Soil-to-plant transfer factor (pCi/g-fresh plant per pCi/g-wet soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52E-12</td>
<td>2.70E-05</td>
<td>4.95E-02</td>
<td>6.44E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irr_{rup} (L/kg)</th>
<th>Irr_{res} (L/kg)</th>
<th>Irr_{lep} (L/kg)</th>
<th>Ingestion PRG (pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.30E+01</td>
<td>9.29E+00</td>
<td>3.64E+00</td>
<td>2.12E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalation PRG (pCi/L)</th>
<th>Immersion PRG (pCi/L)</th>
<th>Produce Consumption PRG (pCi/L)</th>
<th>Total PRG (pCi/L)</th>
<th>Total PRG (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>9.17E+05</td>
<td>1.38E+00</td>
<td>8.35E-01</td>
<td>1.17E-04</td>
</tr>
</tbody>
</table>
## Residential Generic Outputs

### Soil

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Inhalation Slope Factor (risk/pCi)</th>
<th>External Exposure Slope Factor (risk/yr per pCi/g)</th>
<th>Food Ingestion Slope Factor (risk/pCi)</th>
<th>Soil Ingestion Slope Factor (risk/pCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>2.22E-10</td>
<td>7.99E-07</td>
<td>3.42E-11</td>
<td>5.85E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particulate Emission or Volatilization factor (m³/kg)</th>
<th>Lambda</th>
<th>Halflife (years)</th>
<th>Default Soil Volume Area Correction Factor</th>
<th>Default Soil Volume Gamma Shielding Factor</th>
<th>Wet Soil-to-plant transfer factor (pCi/g-fresh plant per pCi/g-wet soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.36E+09</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>6.44E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingestion PRG (pCi/g)</th>
<th>Inhalation PRG (pCi/g)</th>
<th>External Exposure PRG (pCi/g)</th>
<th>Produce Consumption PRG (pCi/g)</th>
<th>Total PRG (pCi/g)</th>
<th>Total PRG (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.53E+01</td>
<td>3.80E+04</td>
<td>1.45E-01</td>
<td>5.48E-02</td>
<td>3.97E-02</td>
<td>5.56E-03</td>
</tr>
</tbody>
</table>
# Residential Generic Outputs

## 2D Direct External Exposure

<table>
<thead>
<tr>
<th>Isotope</th>
<th>External Exposure Slope Factor (risk/yr per pCi/g)</th>
<th>External Exposure Slope Factor (1 cm) (risk/yr per pCi/g)</th>
<th>External Exposure Slope Factor (5 cm) (risk/yr per pCi/g)</th>
<th>External Exposure Slope Factor (15 cm) (risk/yr per pCi/g)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ground Plane External Exposure Slope Factor (risk/yr per pCi/cm²)</th>
<th>Default Soil Volume Area Correction Factor</th>
<th>Default Ground Plane Area Correction Factor</th>
<th>Default 1 cm Area Correction Factor</th>
<th>Default 5 cm Area Correction Factor</th>
<th>Default 15 cm Area Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.42E-07</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default Soil Volume Gamma Shielding Factor</th>
<th>Default Ground Plane Gamma Shielding Factor</th>
<th>Default 1 cm Gamma Shielding Factor</th>
<th>Default 5 cm Gamma Shielding Factor</th>
<th>Default 15 cm Gamma Shielding Factor</th>
<th>Lambda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>5.54E-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halflife (years)</th>
<th>Soil Volume PRG (pCi/g)</th>
<th>Soil Volume @ 1cm PRG (pCi/g)</th>
<th>Soil Volume @ 5cm PRG (pCi/g)</th>
<th>Soil Volume @ 15cm PRG (pCi/g)</th>
<th>Ground Plane PRG (pCi/cm²)</th>
<th>Soil Volume PRG (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25E+09</td>
<td>1.45E-01</td>
<td>8.17E-01</td>
<td>2.83E-01</td>
<td>1.75E-01</td>
<td>8.12E-01</td>
<td>2.03E-02</td>
</tr>
</tbody>
</table>
# Residential Generic Outputs

## Soil to Groundwater

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Food Ingestion Slope Factor (risk/pCi)</th>
<th>Water Ingestion Slope Factor (risk/pCi)</th>
<th>Inhalation Slope Factor (risk/pCi)</th>
<th>Immersion Slope Factor (risk/yr per pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>3.42E-11</td>
<td>2.47E-11</td>
<td>2.22E-10</td>
<td>1.56E-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halflife (days)</th>
<th>$\lambda_i$ (1/day)</th>
<th>$\lambda_B$ (1/day)</th>
<th>$\lambda_E$ (1/day)</th>
<th>Irr$_{rup}$ (L/kg)</th>
<th>Irr$_{res}$ (L/kg)</th>
<th>Irr$_{dep}$ (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57E+11</td>
<td>1.52E-12</td>
<td>2.70E-05</td>
<td>4.95E-02</td>
<td>6.44E-01</td>
<td>2.30E+01</td>
<td>9.29E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCL (pCi/L)</th>
<th>$K_d$ Distribution coefficient (L/kg)</th>
<th>Lambda</th>
<th>decay</th>
<th>Ingestion PRG (pCi/L)</th>
<th>Inhalation PRG (pCi/L)</th>
<th>Immersion PRG (pCi/L)</th>
<th>Produce Consumption PRG (pCi/L)</th>
<th>Tap Water PRG (pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.88E+00</td>
<td>1.30E+01</td>
<td>5.54E-10</td>
<td>1.4403E-8</td>
<td>2.12E+00</td>
<td>-</td>
<td>9.17E+05</td>
<td>1.38E+00</td>
<td>8.35E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total PRG (mg/L)</th>
<th>Groundwater Risk-based Concentration (activity)</th>
<th>Groundwater MCL-based Concentration (activity)</th>
<th>SSL Risk-based (pCi/g)</th>
<th>SSL Risk-based (mg/kg)</th>
<th>SSL MCL-based (pCi/g)</th>
<th>SSL MCL-based (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17E-04</td>
<td>8.35E-01</td>
<td>1.88E+00</td>
<td>1.10E-02</td>
<td>1.54E-03</td>
<td>2.49E-02</td>
<td>3.48E-03</td>
</tr>
</tbody>
</table>
Residential Generic Outputs

Fish

Default
Resident PRGs for Contaminated Fish

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Food Ingestion Slope Factor (risk/pCi)</th>
<th>Ingestion of Fish PRG TR=1.0E-6 (pCi/g)</th>
<th>Ingestion of Fish PRG TR=1.0E-6 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>3.42E-11</td>
<td>5.95E-02</td>
<td>8.34E-03</td>
</tr>
</tbody>
</table>
DCC Outline

• Background
• Use of Dose Assessment at Superfund Sites
• Development Approach
• Calculator Walkthrough
  – Scenarios
  – Inputs
  – Outputs
DCC Background

- Dose compliance concentrations (DCCs) are isotope activities that correspond to fixed levels of dose.

- Dose conversion factors (DCFs) for a given radionuclide represent the dose equivalent per unit intake or external exposure of that radionuclide.
DCF sets: present DCFs that may be used to calculate either organ DE or EDE for ingestion and inhalation

- ICRP 30
- ICRP 60
- ICRP 107 (ORNL) – based on more recent findings
Radiation Standards

• Standards consist of Effective Dose or Organ Equivalent Dose critical organ dose annual limits
• Equivalent Dose Limits may consider:
  – Specific target tissue or organ (e.g. thyroid)
  – The most radiosensitive tissue or organ
  – Tissue or organ receiving highest dose
• Dose to an organ from internally-deposited radionuclides is generally calculated separately from dose due to external exposure. However, the annual limit is based on the sum of external and internal organ dose.
Dose Assessment in Superfund Sites

- Superfund is **NOT** a dose-based program.
  - Dose assessments should only be conducted under CERCLA when necessary to demonstrate ARAR compliance.
- Dose recommendations (e.g. DOE orders, NRC regulatory guides) should generally not be used as TBCs.
Dose Assessment in Superfund Sites (cont.)

- Dose is not used because dose-based guidance would result in unnecessary inconsistency regarding how radiological and non-radiological (chemical) contaminants are addressed at Superfund sites.
  - Estimates of risk from a given dose estimate may vary by an order of magnitude or more.
Dose Assessment in Superfund Sites (cont.)

• Dose-based guidance generally begins an analysis for determining a site-specific cleanup level at a minimally acceptable risk level rather than the $10^{-6}$ departure set by NCP.

• ARARs above dose of 12 mrem/yr are not considered sufficiently protective.
  – Do not use to establish cleanup levels.
  – Cleanup levels not based on ARAR should be based on carcinogenic risk range of $10^{-4}$ to $10^{-6}$. 
Development Approach – Addressing Radionuclide Background

- Natural background radiation should be considered prior to applying DCCs as cleanup levels.
- Some ARARs are established as increments above background concentrations – obey ARAR procedure.
Development Approach – Potential Problems

- To avoid misuse of DCCs, the following should be avoided:
  - Applying DCCs without adequate CSM
  - Use of DCCs as cleanup levels without considering other relevant criteria
  - Use of DCCs as cleanup levels without verifying numbers with a health physicist/risk assessor
  - Use of outdated, superseded DCC tables
  - Not considering effects from presence of multiple isotopes
DCC Calculator Overview

Using the DCC Calculator

Select Scenario
- Resident
- Composite Worker
- Outdoor Worker
- Indoor Worker
- Construction Worker - Standard Unpaved Road Vehicle Traffic (Site-specific only)
- Construction Worker - Wind Erosion and Other Construction Activities (Site-specific only)
- Recreator (Site-specific only)
- Farmer
- Soil to Groundwater

Select Media:
- Soil
- Air
- 2-D External Exposure
- Tap Water
- Fish

Select DCC type
- Defaults
- Site-specific

Select Units
- pCi
- Bq

Select Isotope Info Type:
- Database defaults
- Select

Select Dose Output:
- Database defaults
- User-provided

Select Individual Isotopes

Complete List
- Ac-223
- Ac-224
- Ac-225
- Ac-226
- Ac-227
- Ac-228
- Ac-230
- Ac-231
- Ac-232
- Ac-233

Common Isotopes
- Ra-226
- Ra-228
- Rn-220
- Rn-222
- Tc-99
- Th-228
- Th-230
- Th-232
- U-234
- U-238

To add an isotope not in the list, select "Site Specific", "User-provided", then "Best Isotope".

Or Select All
- ALL

DCC output options:
- Assume secular equilibrium throughout chain (no decay)
- Provide results for progeny throughout chain (with decay)
- No progeny included with decay

Show Individual Daughter Contributions:
- No
- Yes
DCC Calculator Walkthrough

• Select exposure scenario
  – Same scenarios as discussed in PRG
• Select DCC type: defaults or site-specific
• Select units: units of activity in pCi or Bq
• Select ICRP rule (107, 60 or 30)
• Select isotopes of interest
### Residential SS Inputs

#### Common Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAF&lt;sub&gt;a&lt;/sub&gt;</td>
<td>Annual age fraction - resident adult</td>
<td>unitless</td>
<td>0.77</td>
</tr>
<tr>
<td>AAF&lt;sub&gt;c&lt;/sub&gt;</td>
<td>Annual age fraction - resident child</td>
<td>unitless</td>
<td>0.23</td>
</tr>
<tr>
<td>DL</td>
<td>Dose limit</td>
<td>mrem</td>
<td>1</td>
</tr>
<tr>
<td>ED&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure duration - resident</td>
<td>yr</td>
<td>26</td>
</tr>
<tr>
<td>ED&lt;sub&gt;a&lt;/sub&gt;</td>
<td>Exposure duration - resident adult</td>
<td>yr</td>
<td>20</td>
</tr>
<tr>
<td>ED&lt;sub&gt;c&lt;/sub&gt;</td>
<td>Exposure duration - resident child</td>
<td>yr</td>
<td>6</td>
</tr>
<tr>
<td>EF&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure frequency - resident</td>
<td>day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;a&lt;/sub&gt;</td>
<td>Exposure frequency - resident adult</td>
<td>day/yr</td>
<td>350</td>
</tr>
<tr>
<td>EF&lt;sub&gt;c&lt;/sub&gt;</td>
<td>Exposure frequency - resident child</td>
<td>day/yr</td>
<td>350</td>
</tr>
<tr>
<td>ET&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Exposure time - resident</td>
<td>hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;a&lt;/sub&gt;</td>
<td>Exposure time - resident adult</td>
<td>hr</td>
<td>24</td>
</tr>
<tr>
<td>ET&lt;sub&gt;c&lt;/sub&gt;</td>
<td>Exposure time - resident child</td>
<td>hr</td>
<td>24</td>
</tr>
<tr>
<td>t&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Time - resident</td>
<td>yr</td>
<td>1</td>
</tr>
</tbody>
</table>
### Residential SS Inputs

**Soil- Ingestion, External, Inhalation & Produce**

<table>
<thead>
<tr>
<th>Slab size for ACF</th>
<th>Soil</th>
<th>Ingestion, External, Inhalation &amp; Produce</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Select a slab size</strong></td>
<td><strong>Select a soil thickness cover layer</strong></td>
<td><strong>Select cover layer thickness for GSF&lt;sub&gt;γ&lt;/sub&gt; (gamma shielding factor - outdoor)</strong></td>
</tr>
<tr>
<td><strong>0.77</strong></td>
<td><strong>0.23</strong></td>
<td><strong>unitless</strong></td>
</tr>
</tbody>
</table>

- **AAF<sub>γ</sub>** (annual age fraction - resident adult) unitless
- **AAF<sub>γ</sub>** (annual age fraction - resident child) unitless

<table>
<thead>
<tr>
<th>#</th>
<th><strong>DL</strong> (dose limit) mrem</th>
<th><strong>ET&lt;sub&gt;r,a&lt;/sub&gt;</strong> (exposure time - resident adult) hr/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th><strong>ED&lt;sub&gt;r,a&lt;/sub&gt;</strong> (exposure duration - resident adult) yr</th>
<th><strong>ED&lt;sub&gt;r,c&lt;/sub&gt;</strong> (exposure duration - resident child) yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th><strong>EF&lt;sub&gt;r,a&lt;/sub&gt;</strong> (exposure frequency - resident adult) day/yr</th>
<th><strong>EF&lt;sub&gt;r,c&lt;/sub&gt;</strong> (exposure frequency - resident child) day/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th><strong>ET&lt;sub&gt;r,a&lt;/sub&gt;</strong> (exposure time - resident adult) hr/day</th>
<th><strong>t&lt;sub&gt;r&lt;/sub&gt;</strong> (time - resident) yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.752</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTES:**

1. DCF<sub>γ</sub>=oral ingestion dose conversion factor (mrem/pCi).
2. DCF<sub>i</sub>=inhalation dose conversion factor (mrem/pCi).
3. DCF<sub>ex,v</sub>=external exposure dose conversion factor (mrem-g/pCi-yr).
4. t<sub>r</sub>=time of exposure (yr) = ED<sub>r,a</sub> = ED<sub>r,c</sub> = ED<sub>r</sub>
5. λ=decay constant
6. Q/C<sub>av</sub>=calculations based on site size and climatic zone. Further details on the derivation of Q/C<sub>av</sub> can be found in Appendix D
7. A, B, C = PEF region-specific dispersion constants (unitless)
8. 0≤GSF<sub>γ</sub>≤1

---

**Superfund Radiation Risk Assessment Calculator Training**

**EPA United States Environmental Protection Agency**
## Residential SS Inputs

### Produce

<table>
<thead>
<tr>
<th>Produce Ingestion Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce Consumption - direct</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPF&lt;sub&gt;r&lt;/sub&gt; (contaminated plant fraction)</td>
<td>0.25</td>
</tr>
<tr>
<td>IFF&lt;sub&gt;r-adj&lt;/sub&gt; (age-adjusted fruit ingestion factor - resident)</td>
<td>56283</td>
</tr>
<tr>
<td>IFV&lt;sub&gt;r-adj&lt;/sub&gt; (age-adjusted vegetable ingestion factor - resident)</td>
<td>38095</td>
</tr>
<tr>
<td>IRF&lt;sub&gt;r-a&lt;/sub&gt; (fruit consumption rate - resident adult)</td>
<td>188.5</td>
</tr>
<tr>
<td>IRF&lt;sub&gt;r-c&lt;/sub&gt; (fruit consumption rate - resident child)</td>
<td>68.1</td>
</tr>
<tr>
<td>IRV&lt;sub&gt;r-a&lt;/sub&gt; (vegetable consumption rate - resident adult)</td>
<td>128.9</td>
</tr>
<tr>
<td>IRV&lt;sub&gt;r-c&lt;/sub&gt; (vegetable consumption rate - resident child)</td>
<td>41.7</td>
</tr>
</tbody>
</table>
## Residential SS Inputs

### Air – External and Inhalation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAFₐ</td>
<td>Annual age fraction - resident adult</td>
<td>unitless</td>
</tr>
<tr>
<td>AAFₜ</td>
<td>Annual age fraction - resident child</td>
<td>unitless</td>
</tr>
<tr>
<td>DL</td>
<td>Dose limit</td>
<td>mrem</td>
</tr>
<tr>
<td>EDᵣ</td>
<td>Exposure duration - resident</td>
<td>yr</td>
</tr>
<tr>
<td>EDᵣ₋ₐ</td>
<td>Exposure duration - resident adult</td>
<td>yr</td>
</tr>
<tr>
<td>EDᵣ₋ₜ</td>
<td>Exposure duration - resident child</td>
<td>yr</td>
</tr>
<tr>
<td>EFᵣ</td>
<td>Exposure frequency</td>
<td>day/yr</td>
</tr>
<tr>
<td>EFᵣ₋ₐ</td>
<td>Exposure frequency - resident adult</td>
<td>day/yr</td>
</tr>
<tr>
<td>EFᵣ₋ₜ</td>
<td>Exposure frequency - resident child</td>
<td>day/yr</td>
</tr>
<tr>
<td>ETᵣ</td>
<td>Exposure time - resident</td>
<td>hr</td>
</tr>
<tr>
<td>ETᵣ₋ₐ</td>
<td>Exposure time - resident adult</td>
<td>hr</td>
</tr>
<tr>
<td>ETᵣ₋ₜ</td>
<td>Exposure time - resident child</td>
<td>hr</td>
</tr>
<tr>
<td>GSFₐ</td>
<td>Gamma shielding factor</td>
<td>unitless</td>
</tr>
<tr>
<td>IFAᵣ₋ₜ</td>
<td>Age-adjusted inhalation factor</td>
<td>m²</td>
</tr>
<tr>
<td>IRAᵣ₋ₐ</td>
<td>Inhalation rate - resident adult</td>
<td>m³/day</td>
</tr>
<tr>
<td>IRAᵣ₋ₜ</td>
<td>Inhalation rate - resident child</td>
<td>m³/day</td>
</tr>
<tr>
<td>tᵣ</td>
<td>Time - resident</td>
<td>yr</td>
</tr>
</tbody>
</table>

### Notes:

1. $DCF_{inhal} =$ inhalation dose conversion factor (mrem/pCi)
2. $DCF_{sub} =$ submersion dose conversion factor (mrem/pCi)
3. $tᵣ =$ time of exposure (yr) = $EDᵣ = EDᵣ₋ₜ = EDᵣ₋ₐ$
4. $\lambda =$ decay constant
5. $0 \leq GSFₐ \leq 1$
## Residential SS Inputs

### Tapwater – Ingestion, External, Inhalation, & Produce

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAFₐ</td>
<td>Annual Age Fraction - Resident Adult</td>
<td>unitless</td>
</tr>
<tr>
<td>AAFᵦ</td>
<td>Annual Age Fraction - Resident Child</td>
<td>unitless</td>
</tr>
<tr>
<td>DFAᵦₐₜₐ</td>
<td>Age-Adjusted Immersion Factor - Resident</td>
<td>hr</td>
</tr>
<tr>
<td>DL</td>
<td>Dose Limit</td>
<td>mrem</td>
</tr>
<tr>
<td>EDᵦₐ</td>
<td>Exposure Duration - Resident Adult</td>
<td>yr</td>
</tr>
<tr>
<td>EDᵦᵦ</td>
<td>Exposure Duration - Resident Child</td>
<td>yr</td>
</tr>
<tr>
<td>EFᵦₐ</td>
<td>Exposure Frequency - Resident Adult</td>
<td>day/yr</td>
</tr>
<tr>
<td>EFᵦᵦ</td>
<td>Exposure Frequency - Resident Child</td>
<td>day/yr</td>
</tr>
<tr>
<td>ETᵦₐ</td>
<td>Exposure Time - Resident Adult</td>
<td>hr</td>
</tr>
<tr>
<td>ETᵦᵦ</td>
<td>Exposure Time - Resident Child</td>
<td>hr</td>
</tr>
<tr>
<td>EVᵦₐ</td>
<td>Bathing Events per Day - Resident Adult</td>
<td>event/day</td>
</tr>
<tr>
<td>EVᵦᵦ</td>
<td>Bathing Events per Day - Resident Child</td>
<td>event/day</td>
</tr>
<tr>
<td>F</td>
<td>Irrigation Period</td>
<td>unitless</td>
</tr>
<tr>
<td>IAFᵦₐₜₐ</td>
<td>Age-Adjusted Inhalation Factor - Resident</td>
<td>m³</td>
</tr>
<tr>
<td>IRᵦₐ</td>
<td>Inhalation Rate - Resident Adult</td>
<td>m³/day</td>
</tr>
<tr>
<td>IRᵦᵦ</td>
<td>Inhalation Rate - Resident Child</td>
<td>m³/day</td>
</tr>
<tr>
<td>Iₑ</td>
<td>Irrigation Rate</td>
<td>L/m²-day</td>
</tr>
<tr>
<td>IRWᵦₐ</td>
<td>Water Intake Rate - Resident Adult</td>
<td>L/day</td>
</tr>
<tr>
<td>IRWᵦᵦ</td>
<td>Water Intake Rate - Resident Child</td>
<td>L/day</td>
</tr>
<tr>
<td>K</td>
<td>Volatilization Factor of Andelman</td>
<td>L/m³</td>
</tr>
<tr>
<td>λᵦₜ₝</td>
<td>Soil Leaching Rate</td>
<td>1/day</td>
</tr>
<tr>
<td>MLP</td>
<td>Produce Plant Mass Loading Factor</td>
<td>unitless</td>
</tr>
<tr>
<td>P</td>
<td>Area Density for Root Zone</td>
<td>kg/m²</td>
</tr>
<tr>
<td>T</td>
<td>Translocation Factor</td>
<td>unitless</td>
</tr>
<tr>
<td>tₐₑᵥₑᵥₑ</td>
<td>Duration of Bathing Event - Adult</td>
<td>hr/ event</td>
</tr>
<tr>
<td>tₐₑᵥₑᵥₑ</td>
<td>Duration of Bathing Event - Child</td>
<td>hr/ event</td>
</tr>
<tr>
<td>tₑᵥₑᵥₑ</td>
<td>Above Ground Exposure Time</td>
<td>day</td>
</tr>
<tr>
<td>tₐᵥₑᵥₑ</td>
<td>Weathering Half-Life</td>
<td>day</td>
</tr>
<tr>
<td>Yₑᵥₑ</td>
<td>Plant Yield - Wet</td>
<td>kg/m²</td>
</tr>
</tbody>
</table>
## Residential SS Inputs
### Soil – 2-D Analysis

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DL (dose limit) mrem</td>
</tr>
<tr>
<td>1</td>
<td>ED&lt;sub&gt;r&lt;/sub&gt; (exposure duration - resident) yr</td>
</tr>
<tr>
<td>350</td>
<td>EF&lt;sub&gt;r&lt;/sub&gt; (exposure frequency - resident) day/yr</td>
</tr>
<tr>
<td>1.752</td>
<td>ET&lt;sub&gt;r,i&lt;/sub&gt; (exposure time - indoor resident) hr/day</td>
</tr>
<tr>
<td>16.416</td>
<td>ET&lt;sub&gt;r,o&lt;/sub&gt; (exposure time - outdoor resident) hr/day</td>
</tr>
<tr>
<td>0.4</td>
<td>GSF&lt;sub&gt;i&lt;/sub&gt; (gamma shielding factor - indoor) unitless</td>
</tr>
<tr>
<td>1</td>
<td>t&lt;sub&gt;r&lt;/sub&gt; (time - resident) yr</td>
</tr>
</tbody>
</table>

### NOTES:
1. Slab size for ACF in alternate external exposure equations is determined by size selected in soil section above.
2. DCF<sub>ext-gp</sub> = ground plane external exposure dose conversion factor (mrem-cm<sup>2</sup>/pCi-yr).
3. DCF<sub>ext-sv</sub> = infinite soil volume external exposure dose conversion factor (mrem-g/pCi-yr).
4. DCF<sub>ext-1cm</sub> = soil volume at 1 cm external exposure dose conversion factor (mrem-g/pCi-yr).
5. DCF<sub>ext-5cm</sub> = soil volume at 5 cm external exposure dose conversion factor (mrem-g/pCi-yr).
6. DCF<sub>ext-15cm</sub> = soil volume at 15 cm external exposure dose conversion factor (mrem-g/pCi-yr).
7. t<sub>r</sub> = time of exposure (yr) = ED<sub>r</sub>
8. λ = decay constant
9. 0 ≤ GSF<sub>i</sub> ≤ 1

---

**EPA**
United States Environmental Protection Agency

**Superfund Radiation Risk Assessment Calculator Training**
Residential SS Inputs
Particulate Emission Factor

$$\text{PEF} \left( \frac{m^3}{\text{kg} \cdot \text{soil}} \right) = \frac{Q}{C_{\text{wind}}} \frac{\left( \frac{g}{m^2 \cdot s} \right)}{\left( \frac{kg}{m^3} \right)} \times \frac{3.800 \left( \frac{s}{\text{hour}} \right)}{0.035 \times \left( 1 - V \right) \times \left( \frac{U_m}{m} \right)^2 \times F(x)}$$

and:
$$\frac{Q}{C_{\text{wind}}} = A \exp \left( \frac{\left( \ln A_3 \cdot (\text{acra} \cdot B) \right)^2}{C} \right)$$

- Default $$\text{City (Climatic Zone)}$$ - Selection based on most likely climatic conditions for the site
- 0.5 $$A_v (\text{acres})$$
- 1359344438 $$\text{PEF (particulate emission factor)} m^3/\text{kg}$$
- 93.77 $$Q/C_{\text{wp}}$$ / Inverse of the ratio of the geometric mean air concentration to the emission flux at center of a square source ($$g/m^2 \cdot s \text{ per kg/m}^3$$)
- 16.2302 $$A (\text{Dispersion Constant})$$
- 18.7762 $$B (\text{Dispersion Constant})$$
- 216.108 $$C (\text{Dispersion Constant})$$
- 0.5 $$V / \text{Fraction of vegetative cover (unitless)}$$
- 4.69 $$U_m / \text{mean annual wind speed (m/s)}$$
- 11.32 $$U_e / \text{equivalent threshold value (m/s)}$$
- 0.194 $$F(x) / \text{function dependant on } U_m/U_e \text{ derived using Cowherd et al. (1985) (unitless)}$$

Superfund Radiation Risk Assessment Calculator Training
# Residential SS Inputs
## Fish

### Resident Exposure to Consumption of Fish

#### Ingestion Exposure

<table>
<thead>
<tr>
<th>Fish Ingestion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DL (dose limit) mrem</td>
</tr>
<tr>
<td>26</td>
<td>ED_r (exposure duration - resident) yr</td>
</tr>
<tr>
<td>350</td>
<td>EF_r (exposure frequency - resident) day/yr</td>
</tr>
<tr>
<td>54</td>
<td>IRF_a (fish intake rate - adult) g/day</td>
</tr>
<tr>
<td>26</td>
<td>t_r (time - resident) yr</td>
</tr>
</tbody>
</table>

#### NOTES:
1. DCF_o = food dose conversion factor (mrem/pCi), rad-specific
## Residential SS Inputs
### Soil to Groundwater – Dilution Factor

### Dilution Factor for Migration to Groundwater

<table>
<thead>
<tr>
<th>Dilution Attenuation Factor</th>
<th>Mixing Zone Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF (dilution attenuation factor) unitless</td>
<td>$d_a$ (aquifer thickness) m - site-specific</td>
</tr>
<tr>
<td>$K$ (aquifer hydraulic conductivity) m/yr</td>
<td>$i$ (hydraulic gradient) m/m</td>
</tr>
<tr>
<td>$L$ (source length parallel to groundwater flow) m</td>
<td>0.18 $I$ (infiltration rate) m/yr</td>
</tr>
<tr>
<td>$d$ (mixing zone depth) m - site-specific</td>
<td></td>
</tr>
</tbody>
</table>

### NOTES:
1. The dilution factor (DAF) has a default of 1 for a $\leq$ 0.5-acre source.
2. If DAF is known, enter it above. Or, to calculate DAF, enter your own site-specific values for the variables in the necessary fields above.
3. When DAF is entered or calculated, the values for the blue DAF boxes in the Migration to Groundwater sections below will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
Residential SS Inputs
Soil to Groundwater – Partition Equation

### Partitioning Equation for Migration to Groundwater

<table>
<thead>
<tr>
<th>Method 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DAF (dilution attenuation factor) unitless</td>
<td>26</td>
</tr>
<tr>
<td>1.5</td>
<td>( \rho_b ) (dry soil bulk density) kg/L</td>
<td>0.3</td>
</tr>
</tbody>
</table>

**NOTES:**
1. The Partitioning Equation for Migration to Ground Water is used by default. To use the Mass-Limit Equation, enter values for the required parameters in the section below.
2. The dilution factor (DAF) has a default of 1 for a <= 0.5-acre source.
3. If DAF is known, enter it in the Dilution Factor section above. When DAF is entered or calculated in the section above, the value for the blue DAF box in this section will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
## Residential SS Inputs

### Soil to Groundwater – Mass Limit

**Mass-Limit Equation for Migration to Groundwater**

<table>
<thead>
<tr>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DAF</strong> (dilution attenuation factor) unitless</td>
</tr>
<tr>
<td><strong>$d_s$</strong> (depth of source) m - site-specific</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

### NOTES:

1. The *Partitioning Equation* for Migration to Groundwater above is used by default. To use the Mass-Limit Equation, enter values for $ED$, $d_s$, and $P_b$ in this section and enter a value for $I$ in the *Dilution Factor* section above.

2. The dilution factor (DAF) has a default of 1 for a <= 0.5-acre source.

3. If DAF is known, enter it in the *Dilution Factor* section above. When DAF is entered or calculated in the section above, the value for the blue DAF box in this section will be populated. If DAF is not entered or calculated, the default value of 1 will be used.
# DCC Residential Generic Output

## Soil

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Inhalation DCF (mrem/pCi)</th>
<th>External Exposure DCF (mrem/yr per pCi/g)</th>
<th>Ingestion DCF (mrem/pCi)</th>
<th>Particulate Emission or Volatilization factor (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>7.77E-6</td>
<td>0.994045</td>
<td>0.0000229</td>
<td>1.36E+09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lambda (1/yr)</th>
<th>Halflife (years)</th>
<th>1000029 m² Soil Volume Area Correction Factor</th>
<th>cm Soil Volume Gamma Shielding Factor</th>
<th>Wet Soil-to-plant transfer factor (pCi/g-fresh plant per pCi/g-wet soil)</th>
<th>Ingestion PRG (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>6.44E-01</td>
<td>1.01E+03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalation PRG (pCi/g)</th>
<th>External Exposure PRG (pCi/g)</th>
<th>Produce Consumption PRG (pCi/g)</th>
<th>Total PRG (pCi/g)</th>
<th>Total PRG (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.82E+07</td>
<td>1.16E-01</td>
<td>2.04E+00</td>
<td>1.10E-01</td>
<td>1.54E-02</td>
</tr>
</tbody>
</table>

**Superfund Radiation Risk Assessment Calculator Training**
## DCC Residential Generic Output

### Air

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Inhalation DCF (mrem/pCi)</th>
<th>External Exposure DCF (Submersion) (mrem/yr per pCi/m³)</th>
<th>Lambda (1/yr)</th>
<th>Halflife (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>7.77E-6</td>
<td>0.0009243</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalation PRG (pCi/m³)</th>
<th>External Exposure PRG (pCi/m³)</th>
<th>Ambient Air PRG (no decay) (pCi/m³)</th>
<th>Inhalation PRG (no decay) (pCi/m³)</th>
<th>External Exposure PRG (no decay) (pCi/m³)</th>
<th>Ambient Air PRG (no decay) (pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.08E+01</td>
<td>4.34E+01</td>
<td>1.40E+01</td>
<td>2.08E+01</td>
<td>4.34E+01</td>
<td>1.40E+01</td>
</tr>
</tbody>
</table>

### Fish

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Ingestion DCF (mrem/pCi)</th>
<th>Ingestion of Fish PRG DL=1 (pCi/g)</th>
<th>Ingestion of Fish PRG DL=1 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>0.00000229</td>
<td>8.87E-02</td>
<td>1.24E-02</td>
</tr>
</tbody>
</table>
# DCC Residential Generic Output

## Tapwater

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Water Ingestion DCF (mrem/pCi)</th>
<th>Inhalation DCF (mrem/pCi)</th>
<th>Ingestion DCF (mrem/pCi)</th>
<th>Immersion DCF (mrem/yr per pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>-</td>
<td>7.77E-06</td>
<td>2.29E-05</td>
<td>1.96E-06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halflife (days)</th>
<th>$\lambda_i$ (1/day)</th>
<th>$\lambda_B$ (1/day)</th>
<th>$\lambda_E$ (1/day)</th>
<th>Wet Soil-to-plant transfer factor (pCi/g-fresh plant per pCi/g-wet soil)</th>
<th>$Irr_{rup}$ (L/kg)</th>
<th>$Irr_{res}$ (L/kg)</th>
<th>$Irr_{dep}$ (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57E+11</td>
<td>1.52E-12</td>
<td>2.70E-05</td>
<td>4.95E-02</td>
<td>6.44E-01</td>
<td>2.30E+01</td>
<td>9.29E+00</td>
<td>3.64E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingestion PRG (pCi/L)</th>
<th>Inhalation PRG (pCi/L)</th>
<th>Immersion PRG (pCi/L)</th>
<th>ingpp</th>
<th>Produce Consumption PRG (pCi/L)</th>
<th>Total PRG (pCi/L)</th>
<th>Total PRG (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>1.90E+07</td>
<td>1.8475483</td>
<td>5.14E+01</td>
<td>5.14E+01</td>
<td>7.20E-03</td>
</tr>
</tbody>
</table>
### DCC Residential Generic Output

<table>
<thead>
<tr>
<th>Isotope</th>
<th>External Exposure DCF (mrem/yr per pCi/g)</th>
<th>External Exposure DCF (1 cm) (mrem/yr per pCi/g)</th>
<th>External Exposure DCF (5 cm) (mrem/yr per pCi/g)</th>
<th>External Exposure DCF (15 cm) (mrem/yr per pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>0.994045</td>
<td>0.177175</td>
<td>0.50355</td>
<td>0.8206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Exposure DCF (Ground Plane) (mrem/yr per pCi/cm²)</th>
<th>1000029 m² Soil Volume Area Correction Factor</th>
<th>1000029 m² Ground Plane Area Correction Factor</th>
<th>1000029 m² 1 cm Area Correction Factor</th>
<th>1000029 m² 5 cm Area Correction Factor</th>
<th>1000029 m² 15 cm Area Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.238068</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cm</th>
<th>Soil Volume Gamma Shielding Factor</th>
<th>cm</th>
<th>Ground Plane Gamma Shielding Factor</th>
<th>cm</th>
<th>1 cm Gamma Shielding Factor</th>
<th>cm</th>
<th>5 cm Gamma Shielding Factor</th>
<th>cm</th>
<th>15 cm Gamma Shielding Factor</th>
<th>Lambda</th>
<th>Halflife (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>1.00E+00</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Volume PRG (pCi/g)</th>
<th>Soil Volume @ 1cm PRG (pCi/g)</th>
<th>Soil Volume @ 5cm PRG (pCi/g)</th>
<th>Soil Volume @ 15cm PRG (pCi/g)</th>
<th>Ground Plane PRG (pCi/cm²)</th>
<th>Soil Volume PRG (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.47E+00</td>
<td>8.25E+00</td>
<td>2.90E+00</td>
<td>1.78E+00</td>
<td>6.14E+00</td>
<td>2.06E-01</td>
</tr>
</tbody>
</table>
## DCC Residential Generic Output

### Soil to Groundwater

<table>
<thead>
<tr>
<th>Isotope</th>
<th>ICRP Lung Absorption Type</th>
<th>Ingestion DCF (mrem/pCi)</th>
<th>Water Ingestion DCF (mrem/pCi)</th>
<th>Inhalation DCF (mrem/pCi)</th>
<th>Immersion DCF (mrem/yr per pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>F</td>
<td>2.29E-05</td>
<td>-</td>
<td>7.77E-06</td>
<td>1.96E-06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halflife (days)</th>
<th>$\lambda_i$ (1/day)</th>
<th>$\lambda_B$ (1/day)</th>
<th>$\lambda_E$ (1/day)</th>
<th>Wet Soil-to-plant transfer factor (pCi/g-fresh plant per pCi/g-wet soil)</th>
<th>$Irr_{rup}$ (L/kg)</th>
<th>$Irr_{res}$ (L/kg)</th>
<th>$Irr_{dep}$ (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57E+11</td>
<td>1.52E-12</td>
<td>2.70E-05</td>
<td>4.95E-02</td>
<td>6.44E-01</td>
<td>2.30E+01</td>
<td>9.29E+00</td>
<td>3.64E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCL (pCi/L)</th>
<th>Distribution coefficient (L/kg)</th>
<th>Lambda (1/yr) decay</th>
<th>Ingestion PRG (pCi/L)</th>
<th>Inhalation PRG (pCi/L)</th>
<th>Immersion PRG (pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.88E+00</td>
<td>1.30E+01</td>
<td>5.54E-10</td>
<td>-</td>
<td>-</td>
<td>7.32E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Produce Consumption PRG (pCi/L)</th>
<th>Tap Water PRG (pCi/L)</th>
<th>Total PRG (mg/L)</th>
<th>Groundwater Risk-based Concentration (activity)</th>
<th>Groundwater MCL-based Concentration (activity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.05E+00</td>
<td>2.05E+00</td>
<td>2.88E-04</td>
<td>2.05E+00</td>
<td>1.88E+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSL Risk-based (pCi/g)</th>
<th>SSL Risk-based (mg/kg)</th>
<th>SSL MCL-based (pCi/g)</th>
<th>SSL MCL-based (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.71E-02</td>
<td>3.80E-03</td>
<td>2.49E-02</td>
<td>3.48E-03</td>
</tr>
</tbody>
</table>
Radiation Risk Assessment Calculator Training

Section 5: RSL for Total Uranium
Using the RSL Calculator

Select Scenario
- Resident
- Composite Worker (presented in Generic Tables)
- Construction Worker (RSL only)
- Indoor Worker (RSL only)
- Outdoor Worker RSL only)
- Fish (RSL only)
- Soil to Groundwater (RSL only)
- Recreator (Site Specific RSL only)

Select Media:
- Soil
- Air
- Tapwater

Select RfD/RfC Type:
- Chronic
- Subchronic

Select SL type
- Defaults
- Site Specific

Select Risk Output:
- No
- Yes

Select Individual Chemicals

Or Select Individual CAS Numbers

To add a chemical not in the list, select "Site Specific", "User-provided", then "Test Chemical".

Include Metadata
- Yes

Retrieve
## RSL SS Parameters - soil

<table>
<thead>
<tr>
<th>Age Segment (yr)</th>
<th>AF (mg/cm²)</th>
<th>BW (kg)</th>
<th>ED (yr)</th>
<th>EF (day/yr)</th>
<th>ET (hr/event)</th>
<th>IRS (mg/day)</th>
<th>SA (cm²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>0.2</td>
<td>15</td>
<td>2</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>2-6</td>
<td>0.2</td>
<td>15</td>
<td>4</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>6-16</td>
<td>0.07</td>
<td>80</td>
<td>10</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
<tr>
<td>16-26</td>
<td>0.07</td>
<td>80</td>
<td>10</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
<tr>
<td>Child (0-6)</td>
<td>0.2</td>
<td>15</td>
<td>6</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>Adult (6-26)</td>
<td>0.07</td>
<td>80</td>
<td>20</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
</tbody>
</table>
# RSL SS Parameters - air

## Inhalation Exposure

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Carcinogenic Inhalation</td>
<td></td>
</tr>
<tr>
<td>Air Carcinogenic-(Vinyl Chloride) Inhalation</td>
<td></td>
</tr>
<tr>
<td>Air Non-Carcinogenic Inhalation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ED_r$ (exposure duration - resident) year</td>
<td>26</td>
</tr>
<tr>
<td>$EF_r$ (exposure frequency) day/year</td>
<td>350</td>
</tr>
<tr>
<td>$ET_r$ (exposure time) hour/day</td>
<td>24</td>
</tr>
<tr>
<td>THQ (target hazard quotient) unitless</td>
<td>1</td>
</tr>
<tr>
<td>LT (lifetime - resident) year</td>
<td>70</td>
</tr>
<tr>
<td>TR (target cancer risk) unitless</td>
<td>1.0E-6</td>
</tr>
</tbody>
</table>

### NOTES:
1. Input fields with a "pink" background are a required entry.
2. Input fields with a "blue" background are calculated dynamically.
3. $IUR =$ inhalation unit risk ($\mu g/m^3$)$^{-1}$, chemical-specific
4. $RfC =$ Inhalation reference concentration (mg/m$^3$), chemical-specific
## RSL SS Parameters - tapwater

### Exposure Assessment Details

<table>
<thead>
<tr>
<th>Age Segment (yr)</th>
<th>BW (kg)</th>
<th>ED (yr)</th>
<th>EF (day/yr)</th>
<th>ET (hr/event)</th>
<th>EV (events/day)</th>
<th>IRW (L/day)</th>
<th>SA (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>15</td>
<td>2</td>
<td>350</td>
<td>0.54</td>
<td>1</td>
<td>0.78</td>
<td>6378</td>
</tr>
<tr>
<td>2-6</td>
<td>15</td>
<td>4</td>
<td>350</td>
<td>0.54</td>
<td>1</td>
<td>0.78</td>
<td>6378</td>
</tr>
<tr>
<td>6-16</td>
<td>80</td>
<td>10</td>
<td>350</td>
<td>0.71</td>
<td>1</td>
<td>2.5</td>
<td>20900</td>
</tr>
<tr>
<td>16-26</td>
<td>80</td>
<td>10</td>
<td>350</td>
<td>0.71</td>
<td>1</td>
<td>2.5</td>
<td>20900</td>
</tr>
<tr>
<td>Child (0-6)</td>
<td>15</td>
<td>6</td>
<td>350</td>
<td>0.54</td>
<td>1</td>
<td>0.78</td>
<td>6378</td>
</tr>
<tr>
<td>Adult (6-26)</td>
<td>80</td>
<td>20</td>
<td>350</td>
<td>0.71</td>
<td>1</td>
<td>2.5</td>
<td>20900</td>
</tr>
</tbody>
</table>
## RSL SS Output - soil

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS Number</th>
<th>Mutagen?</th>
<th>VOC?</th>
<th>Ingestion SF (mg/kg-day)$^{-1}$</th>
<th>SFO Ref</th>
<th>Inhalation Unit Risk (ug/m$^3$)$^{-1}$</th>
<th>IUR Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium (Soluble Salts)</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chronic RfD (mg/kg-day)</th>
<th>Chronic RfD Ref</th>
<th>Chronic RfC (mg/m$^3$)</th>
<th>Chronic RfC Ref</th>
<th>GIABS</th>
<th>ABS</th>
<th>RBA</th>
<th>Particulate Emission Factor (m$^3$/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00E-03</td>
<td>1</td>
<td>4.00E-05</td>
<td>A</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1.36E+09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingestion SL TR=1.0E-6 (mg/kg)</th>
<th>Dermal SL TR=1.0E-6 (mg/kg)</th>
<th>Inhalation SL TR=1.0E-6 (mg/kg)</th>
<th>Carcinogenic SL TR=1.0E-6 (mg/kg)</th>
<th>Ingestion SL Child HQ=1 (mg/kg)</th>
<th>Dermal SL Child HQ=1 (mg/kg)</th>
<th>Inhalation SL Child HQ=1 (mg/kg)</th>
<th>Noncarcinogenic SL Child HI=1 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.35E+02</td>
<td>-</td>
<td>5.67E+04</td>
<td>2.34E+02</td>
</tr>
</tbody>
</table>

Superfund Radiation Risk Assessment Calculator Training
## RSL SS Output - air

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS Number</th>
<th>Mutagen?</th>
<th>VOC?</th>
<th>Inhalation Unit Risk (ug/m³)⁻¹</th>
<th>IUR Ref</th>
<th>Chronic RfD (mg/kg-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium (Soluble Salts)</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td></td>
<td>3.00E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chronic RfC (mg/m³)</th>
<th>Chronic RfC Ref</th>
<th>Carcinogenic SL TR=1.0E-6 (ug/m³)</th>
<th>Noncarcinogenic SL HI=1 (µg/m³)</th>
<th>Screening Level (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00E-05</td>
<td>A</td>
<td>-</td>
<td>4.17E-02</td>
<td>4.17E-02 nc</td>
</tr>
</tbody>
</table>
### RSL SS Output - tapwater

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS Number</th>
<th>Mutagen?</th>
<th>VOC?</th>
<th>Chemical Type</th>
<th>Ingestion SF (mg/kg-day)^{-1}</th>
<th>SFO Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium (Soluble Salts)</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>Inorganics</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

#### Chronic RfD (mg/kg-day) | RfD Ref | Chronic RfC (mg/m^3) | RFC Ref | GIABS | K_p (cm/hr) | MW | B (unitless) | t (hr) | τ_{event (hr/event)} | FA (unitless) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00E-03</td>
<td>I</td>
<td>4.00E-05</td>
<td>A</td>
<td>1</td>
<td>0.001</td>
<td>238.03</td>
<td>0.0059339</td>
<td>5.4328535</td>
<td>2.2636889</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In EPD?</th>
<th>DA_{event (ca)}</th>
<th>DA_{event (nc child)}</th>
<th>DA_{event (nc adult)}</th>
<th>MCL ug/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>0.0073579</td>
<td>0.0119754</td>
<td>3.00E+01</td>
</tr>
</tbody>
</table>

#### Ingestion SL Child HQ=1 (µg/L) | Dermal SL Child HQ=1 (µg/L) | Inhalation SL Child HQ=1 (µg/L) | Noncarcinogenic SL Child HI=1 (µg/L) | Ingestion SL Adult HQ=1 (µg/L) | Dermal SL Adult HQ=1 (µg/L) | Inhalation SL Adult HQ=1 (µg/L) | Noncarcinogenic SL Adult HI=1 (µg/L) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.02E+01</td>
<td>1.36E+04</td>
<td>-</td>
<td>5.99E+01</td>
<td>1.00E+02</td>
<td>1.69E+04</td>
<td>-</td>
<td>9.95E+01</td>
<td></td>
</tr>
</tbody>
</table>

Superfund Radiation Risk Assessment Calculator Training
Radiation Risk Assessment Calculator Training

Section 6: BPRG and BDCC Calculators
BPRG Background

- Establish $10^{-6}$ risk-based PRGs inside radioactively contaminated buildings.
- Presented for settled dust and fixed 3D external exposure for residents and indoor workers.
- Based on default exposure parameters, RME conditions.
- BPRGs in both activity and mass units.
- CSFs from ORNL.
Building Calculator Walkthrough

• Scenarios
  – Residential
  – Commercial/industrial indoor worker

• Exposure pathways
  – Settled dust
  – Ambient air
  – 3D direct external exposure to contaminated building materials
  – 3D direct external exposure to settled dust on indoor surface
BDCC Background

- Establish DCCs inside radioactively contaminated buildings.
- Calculate RME concentrations from standardized equations that combine exposure and toxicity info in the form of DCFs.
- Choice of ICRP 30, 60 and 107 DCFs.
- Same exposure scenarios and pathways as BPRG.
Example CSM – BPRG and BDCC

Conceptual Site Model of Quantified Exposure Pathways for radionuclide BPRGs. Black lines are direct exposure routes.
BPRG Calculator Overview

Using the BPRG Calculator

Select Scenario
- Resident
- Indoor Worker

Select Media:
- Dust
- Air
- 3-D External Exposure

Select Units
- pCi
- Bq

Select BPRG type
- Defaults
- Site-specific

Select Risk Output:
- No
- Yes

Select Individual Isotopes

Complete List
- AC-223
- AC-224
- AC-225
- AC-236
- AC-227
- AC-228
- AC-230
- AC-231
- AC-232
- AC-233

Selected

Common Isotopes
- Am-241
- Co-60
- Cz-137
- H-3
- I-129
- I-131
- Pu-238
- Pu-239
- Pu-240
- Ra-226

To add an isotope not in the list, select "Site Specific", "User-provided", then "Test Isotope".

Or Select All
- ALL

BPRG output options:
- Assume secular equilibrium throughout chain (no decay)
- Provide results for progeny throughout chain (with decay)
- No progeny included (with decay)

Show Individual Daughter Contributions:
- No
- Yes

Retrieve
BDCC Calculator Overview

Using the BDCC Calculator

Select Scenario
- Resident
- Indoor Worker

Select Media:
- Dust
- Air
- 3-D External Exposure

Select BDCC Type
- Defaults
- Site-specific

Select Dose Output:
- No
- Yes

Select Units
- pCi
- Bq

Select ICRP rule
- 107 – Center for Radiation Protection Knowledge
- 60/68/72
- 30

Select Individual Isotopes

Complete List
Ac-223
Ac-224
Ac-225
Ac-226
Ac-227
Ac-228
Ac-230
Ac-231
Ac-232
Ac-233

Selected

Common Isotopes
Am-241
Cm-243
Cs-131
H-3
I-125
I-131
Pu-238
Pu-239
Pu-240
Ra-226

To add an isotope not in the list, select "Site Specific"; "User-provided"; then "Fast isotopes".

Or Select All
- ALL

BDCC output options:
- Assume secular equilibrium throughout chain (no decay)
- Provide results for progeny throughout chain (with decay)
- No progeny included (with decay)

Show Individual Daughter Contributions:
- No
- Yes
Residential Settled Dust

- Exposure to radionuclides in settled dust on indoor surfaces.
- Two exposure routes
  - External exposure
  - Ingestion: occurs when hands contact dust-laden surface, then come in contact with mouth
- Variation allowed for hard and soft surfaces, as transfer to skin varies by surface type.
Residential Settled Dust

External Exposure

Ingestion of Dust

Dust

Superfund Radiation Risk Assessment Calculator Training
Residential SS Input
Settled Dust on Surfaces

- Combined Ingestion and Ground Plane External Exposure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( ED_r ) (exposure duration - resident)</td>
<td>yr</td>
</tr>
<tr>
<td>( ED_{r,a} ) (exposure duration - resident adult)</td>
<td>yr</td>
</tr>
<tr>
<td>( ED_{r,c} ) (exposure duration - resident child)</td>
<td>yr</td>
</tr>
<tr>
<td>( EF_r ) (exposure frequency - resident)</td>
<td>day/yr</td>
</tr>
<tr>
<td>( EF_{r,a} ) (exposure frequency - resident adult)</td>
<td>day/yr</td>
</tr>
<tr>
<td>( EF_{r,c} ) (exposure frequency - resident child)</td>
<td>day/yr</td>
</tr>
<tr>
<td>( ET_r ) (exposure time)</td>
<td>hr/day</td>
</tr>
<tr>
<td>( ET_{r,a,h} ) (exposure time - resident adult hard)</td>
<td>hr/day</td>
</tr>
<tr>
<td>( ET_{r,c,h} ) (exposure time - resident child hard)</td>
<td>hr/day</td>
</tr>
<tr>
<td>( ET_{r,a,s} ) (exposure time - resident adult soft)</td>
<td>hr/day</td>
</tr>
<tr>
<td>( ET_{r,c,s} ) (exposure time - resident child soft surface)</td>
<td>hr/day</td>
</tr>
</tbody>
</table>

- Calculations

\[
IFD_{adj} = \frac{F_{in} F_{OFF,SET} F_{Q_a} F_{Q_c} F_{TSS_h} F_{TSS_s}}{k \cdot \alpha_{f,a} \cdot \alpha_{f,c} \cdot \alpha_{s} \cdot t_r}
\]

- Parameters

- \( F_{in} \): fraction time spent indoors
- \( F_{OFF,SET} \): off-set factor
- \( F_{Q_a} \): frequency of hand to mouth - adult
- \( F_{Q_c} \): frequency of hand to mouth - child
- \( F_{TSS_h} \): fraction transferred surface to skin - hard surface
- \( F_{TSS_s} \): fraction transferred surface to skin - soft surface
- \( k \): dissipation rate constant
- \( \alpha_{f,a} \): surface area of fingers - resident adult
- \( \alpha_{f,c} \): surface area of fingers - resident child
- \( \alpha_{s} \): saliva extraction factor
- \( t_r \): time - resident

- Other Parameters

- \( ED_{r,a} \): exposure duration - resident adult
- \( ED_{r,c} \): exposure duration - resident child
- \( EF_{r,a} \): exposure frequency - resident adult
- \( EF_{r,c} \): exposure frequency - resident child
- \( ET_{r,a,h} \): exposure time - resident adult hard
- \( ET_{r,c,h} \): exposure time - resident child hard
- \( ET_{r,a,s} \): exposure time - resident adult soft
- \( ET_{r,c,s} \): exposure time - resident child soft surface
- \( F_{AM} \): area and material factor
- \( F_i \): fraction of time spent in compartment

United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
Residential SS Input
Settled Dust on Surfaces (cont.)

NOTES:
1. $SF_{d,oral}$ = oral slope factor (risk/pCi) - radionuclide-specific
2. $SF_{d,ext}$ = ground-plane external exposure slope factor (risk/yr per pCi/cm²) - radionuclide-specific
3. $ED_r = t_r = ED_{r,c} + ED_{r,a}$
4. $\lambda$ = decay constant - radionuclide-specific
5. When $k = 0$, the dissipation term is not included in the calculation to prevent division by zero which would result a BPRG of zero.
Residential Ambient Air

• Exposure routes
  – Inhalation: assumed to occur for entire 24-hr day
  – Submersion: external exposure to contaminated air
Residential Ambient Air

Superfund Radiation Risk Assessment Calculator Training
### Residential SS Inputs

#### Ambient Air

- **Combined Inhalation & Submersion External Exposure**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>( ED_r ) (exposure duration - resident) yr</td>
<td></td>
</tr>
<tr>
<td>( ED_{r,a} ) (exposure duration - resident adult) yr</td>
<td></td>
</tr>
<tr>
<td>( ED_{r,c} ) (exposure duration - resident child) yr</td>
<td></td>
</tr>
<tr>
<td>( EF_r ) (exposure frequency - resident) day/yr</td>
<td></td>
</tr>
<tr>
<td>( EF_{r,a} ) (exposure frequency - resident adult) day/yr</td>
<td></td>
</tr>
<tr>
<td>( EF_{r,c} ) (exposure frequency - resident child) day/yr</td>
<td></td>
</tr>
<tr>
<td>( ET_r ) (exposure time - resident) hr</td>
<td></td>
</tr>
<tr>
<td>( ET_{r,a} ) (exposure time - resident adult) hr</td>
<td></td>
</tr>
<tr>
<td>( ET_{r,c} ) (exposure time - resident child) hr</td>
<td></td>
</tr>
<tr>
<td>( F_i ) (fraction of time spent in compartment)</td>
<td>unitless</td>
</tr>
<tr>
<td>( F_{in} ) (fraction of time spent indoors)</td>
<td>unitless</td>
</tr>
<tr>
<td>( GSF_a ) (gamma shielding factor - air)</td>
<td>unitless</td>
</tr>
<tr>
<td>( IFA_{r,adj} ) (age-adjusted inhalation rate - resident) m³</td>
<td></td>
</tr>
<tr>
<td>( IRA_{r,a} ) (inhalation rate - resident adult) m³/day</td>
<td></td>
</tr>
<tr>
<td>( IRA_{r,c} ) (inhalation rate - resident child) m³/day</td>
<td></td>
</tr>
<tr>
<td>( t_r ) (time - resident) yr</td>
<td></td>
</tr>
<tr>
<td>( 1.0E-6 ) TR (target cancer risk)</td>
<td>unitless</td>
</tr>
</tbody>
</table>

### NOTES:

1. \( SF_i \) = Inhalation slope factor (risk/pCi) - radionuclide-specific
2. \( SF_{sub} \) = Submersion external exposure slope factor (risk/yr per pCi/m³) - radionuclide-specific
3. \( ED_r = t_r = ED_{r,c} + ED_{r,a} \)
4. \( \lambda \) = Decay constant - radionuclide-specific

---

**Superfund Radiation Risk Assessment Calculator Training**

EPA United States Environmental Protection Agency
Res 3D Direct Ext Exposure to Contaminated Building Materials

- Direct external exposure to radionuclides in building materials of walls and floors.
- Uses 4 source thickness volume slope factors.
Res 3D Direct Ext Exposure to Settled Dust on Indoor Surfaces

- Direct external exposure to radionuclides in settled dust on floors and walls.
- Uses ground plane slope factors.
Residential SS Input
3D Direct External Exposure

◆ Soil Volume & Ground Plane External Exposure

<table>
<thead>
<tr>
<th>UNIT</th>
<th>DESCRIPTION</th>
<th>FORMULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED&lt;sub&gt;res&lt;/sub&gt;</td>
<td>(exposure duration - resident) yr</td>
<td></td>
</tr>
<tr>
<td>EF&lt;sub&gt;res&lt;/sub&gt;</td>
<td>(exposure frequency) day/yr</td>
<td></td>
</tr>
<tr>
<td>ET&lt;sub&gt;res&lt;/sub&gt;</td>
<td>(exposure time - resident) hr/day</td>
<td></td>
</tr>
<tr>
<td>F&lt;sub&gt;am&lt;/sub&gt;</td>
<td>(area and materials factor) unitless</td>
<td></td>
</tr>
<tr>
<td>F&lt;sub&gt;i&lt;/sub&gt;</td>
<td>(fraction of time spent in compartment) unitless</td>
<td></td>
</tr>
<tr>
<td>F&lt;sub&gt;in&lt;/sub&gt;</td>
<td>(fraction time spent indoors) unitless</td>
<td></td>
</tr>
<tr>
<td>F&lt;sub&gt;off-set&lt;/sub&gt;</td>
<td>(off-set factor) unitless</td>
<td></td>
</tr>
<tr>
<td>GSF&lt;sub&gt;b&lt;/sub&gt;</td>
<td>(building gamma shielding factor) unitless</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. SF<sub>ext-gp</sub> = ground plane external exposure slope factor (risk - cm<sup>2</sup>/pCi-yr)
2. SF<sub>ext-v</sub> = infinite soil volume external exposure slope factor (risk - g/pCi-yr)
3. SF<sub>ext-1cm</sub> = soil volume at 1 cm external exposure slope factor (risk - g/pCi-yr)
4. SF<sub>ext-5cm</sub> = soil volume at 5 cm external exposure slope factor (risk - g/pCi-yr)
5. SF<sub>ext-15cm</sub> = soil volume at 15 cm external exposure slope factor (risk - g/pCi-yr)
6. ED<sub>res</sub> = t<sub>res</sub>
7. λ = decay constant
8. F<sub>surf</sub> = Ratio of the dose rate in the room to that for an infinite plane source
9. Composite 1 room material = drywall room, glass window, wooden doors, drywall walls, concrete floor, drywall ceiling
10. Composite 2 room material = concrete room, wooden doors, concrete floor, drywall ceiling

Superfund Radiation Risk Assessment Calculator Training
Indoor Worker Settled Dust

External Exposure to Radiation

Incidental Ingestion of Dust

Break Room

Superfund Radiation Risk Assessment Calculator Training
Indoor Worker Ambient Air

Superfund Radiation Risk Assessment Calculator Training
IW 3D Direct Ext Exposure to Contaminated Building Materials

Superfund Radiation Risk Assessment Calculator Training
IW 3D Direct Ext Exposure to Settled Dust on Indoor Surfaces

Direct External Exposure from Contaminated Dust

Break Room

Superfund Radiation Risk Assessment Calculator Training
# BPRG Residential Generic Output

## Settled Dust

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Soil Ingestion Slope Factor (risk/pCi)</th>
<th>External Exposure Slope Factor (Ground Plane) (risk/yr per pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>5.85E-11</td>
<td>1.42E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lambda</th>
<th>Dissipation</th>
<th>Decay</th>
<th>Halflife (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.54E-10</td>
<td>1</td>
<td>1.4403E-8</td>
<td>1.25E+09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingestion BPRG (pCi/cm²)</th>
<th>External Exposure BPRG (pCi/cm²)</th>
<th>Dust BPRG (pCi/cm²)</th>
<th>Dust BPRG (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.34E-03</td>
<td>2.82E-01</td>
<td>5.25E-03</td>
<td>7.35E-07</td>
</tr>
</tbody>
</table>

## Ambient Air

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Inhalation Slope Factor (risk/pCi)</th>
<th>External Exposure Slope Factor (Submersion) (risk/yr per pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>2.22E-10</td>
<td>7.25E-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lambda</th>
<th>Halflife (years)</th>
<th>Inhalation BPRG (pCi/m³)</th>
<th>External Exposure BPRG (pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>2.80E-02</td>
<td>5.53E+01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient Air BPRG (pCi/m³)</th>
<th>Ambient Air BPRG (mg/m³)</th>
<th>Inhalation BPRG (no decay) (pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80E-02</td>
<td>3.92E-06</td>
<td>2.80E-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Exposure BPRG (no decay) (pCi/m³)</th>
<th>Ambient Air BPRG (no decay) (pCi/m³)</th>
<th>Ambient Air BPRG (no decay) (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.53E+01</td>
<td>2.80E-02</td>
<td>3.92E-06</td>
</tr>
</tbody>
</table>
### BPRG Residential Generic Output

#### 3D Direct External Exposure

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Soil Volume External Exposure Slope Factor (risk/yr per pCi/g)</th>
<th>External Exposure Slope Factor (Ground Plane) (risk/yr per pCi/cm²)</th>
<th>Soil Volume External Exposure Slope Factor (1 cm) (risk/yr per pCi/g)</th>
<th>Soil Volume External Exposure Slope Factor (5 cm) (risk/yr per pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>7.99E-07</td>
<td>1.42E-07</td>
<td>1.42E-07</td>
<td>4.09E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Volume External Exposure Slope Factor (15 cm) (risk/yr per pCi/g)</th>
<th>F&lt;sub&gt;SURF&lt;/sub&gt;</th>
<th>Lambda</th>
<th>Halflife (years)</th>
<th>3-D External Soil Volume BPRG (pCi/g)</th>
<th>3-D External Ground Plane BPRG (pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.62E-07</td>
<td>1.01</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>4.97E-02</td>
<td>2.79E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-D External Soil Volume BPRG (1 cm) (pCi/g)</th>
<th>3-D External Soil Volume BPRG (5 cm) (pCi/g)</th>
<th>3-D External Soil Volume BPRG (15 cm) (pCi/g)</th>
<th>3-D External Soil Volume BPRG (mg/kg)</th>
<th>3-D External Ground Plane BPRG (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80E-01</td>
<td>9.71E-02</td>
<td>6.00E-02</td>
<td>6.97E-03</td>
<td>3.91E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-D External Soil Volume BPRG (1 cm) (mg/kg)</th>
<th>3-D External Soil Volume BPRG (5 cm) (mg/kg)</th>
<th>3-D External Soil Volume BPRG (15 cm) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.93E-02</td>
<td>1.36E-02</td>
<td>8.40E-03</td>
</tr>
</tbody>
</table>
Radiation Risk Assessment Calculator Training

Section 7: SPRG and SDCC Calculators
SPRG Background

◆ Establish 10-6 risk-based PRGs for radioactively contaminated outside hard surfaces.
  ▪ Examples: street slabs, pavement, sidewalks, and sides of buildings.

◆ Standardized SPRGs based on default exposure parameters and incorporate exposure factors that present RME conditions.
Exposure

◆ Scenarios: residential, outdoor worker, indoor worker

◆ Pathways
  - Settled dust on outdoor surfaces
  - 3D direct external exposure to fixed contaminated building materials
  - 3D direct external exposure to fixed settled dust on outdoor surfaces
  - 2D direct external exposure to fixed contaminated finite slabs
  - 2D direct external exposure to settled dust on finite slabs
SDCC Background

- Establish DCCs based on RMEs for contaminated outside hard surfaces.
- Choice of ICRP 30, 60 and 107 DCFs.
- Same exposure scenarios and pathways as SPRG.
Example CSM – SPRG and SDCC

Superfund Radiation Risk Assessment Calculator Training
SDCC Calculator

- Permits SDCC calculations using default values, site-specific, and state values.
- State values permit more specific calculations in absence of site-specific information.
  - Select most likely road conditions based on state, location (urban or rural), and road type.
SPRG Calculator Overview

Using the SPRG Calculator

Select Scenario

- Residential
- Composite Worker
- Outdoor Worker
- Indoor Worker

Select Media:
- Dust
- 3-D External Exposure
- 2-D External Exposure

Select SPRG type

- Defaults
- State
- Site-specific

Select Risk Output:

- No
- Yes

Select Units

- PCi
- Bq

Select Individual Isotopes

Complete List
- Ac-223
- Ac-223+D
- Ac-224
- Ac-225
- Ac-225+D
- Ac-226
- Ac-227
- Ac-228
- Ac-230
- Ac-231

Selected

Common Isotopes
- Am-241
- Co-60
- Cs-137+D
- H-3
- I-129
- I-131
- Pu-238
- Pu-239+D
- Pu-240
- Ra-226+D

To add an isotope not in the list, select "Site Specific", "User-provided", then "Test Isotope".

Or Select All

- ALL

Superfund Radiation Risk Assessment Calculator Training
SDCC Calculator Overview

Using the SDCC Calculator

Select Scenario (streets, outside surfaces)
- Residant
- Indoor Worker
- Outdoor Worker
- Composite Worker

Select Media:
- Dust
- 3-D External Exposure
- Z-D External Exposure

Select Result Type
- Defaults
- State
- Site-specific

Select Dose Output:
- No
- Yes

Select Units
- pCi
- Bq

Select ICRP rule
- 107 - Center for Radiation Protection Knowledge
- 60/68/72
- 30

Select Individual Isotopes

Complete List
- Ac-223
- Ac-223+D
- Ac-223+E
- Ac-224
- Ac-225
- Ac-225+D
- Ac-225+E
- Ac-226
- Ac-227
- Ac-228

Selected

Common Isotopes
- Am-241
- Co-60
- Cs-137+E
- H-3
- I-129
- I-131
- Pu-238
- Pu-239+E
- Pu-240
- Ra-226+E

To add an isotope not in the list, select "Site Specific", "User-provided", then "Test Isotope".

Or Select All
- ALL

Superfund Radiation Risk Assessment Calculator Training
Exposure to Settled Dust on Outdoor Surfaces

◆ Exposure routes
  ▪ Exposure to contamination deposited on surfaces via incidental ingestion
  ▪ Inhalation of resuspended particulates
  ▪ External exposure to ionizing radiation from dust settled on contaminated surfaces
Exposure to Settled Dust on Outdoor Surfaces (cont.)

◆ Resident spends some time inside and some time outside.
  ▪ For indoor time, equation includes GSF for external exposure.
◆ Outdoor worker spends entire shift outside
◆ Indoor worker spends entire shift indoors.
  ▪ Includes GSF for external exposure.
Residential Exposure to Settled Dust on Outdoor Surfaces
Outdoor Worker Exposure to Settled Dust on Outdoor Surfaces
Indoor Worker Exposure to Settled Dust on Outdoor Surfaces

Superfund Radiation Risk Assessment Calculator Training
3D Direct Ext Exposure to Fixed Contaminated Building Materials

- Exposure route: external exposure to ionizing radiation.
- Assume that street (horizontal) and building walls (vertical) on both sides of street are constructed with contaminated materials.
Res 3D Direct Ext Exposure to Fixed Contaminated Building Materials
OW 3D Direct Ext Exposure to Fixed Contaminated Building Materials
IW 3D Direct Ext Exposure to Fixed Contaminated Building Materials
3D Direct Ext Exposure to Fixed Settled Dust on Outdoor Surfaces

- Exposure route: external exposure to ionizing radiation.
- Assume that street and building walls on both sides of street are radioactively contaminated.
- Resident (indoor portion) and indoor worker include GSF for external exposure.
Res 3D Direct Ext Exposure to Fixed Settled Dust on Outdoor Surfaces
OW 3D Direct Ext Exposure to Fixed Settled Dust on Outdoor Surfaces

Superfund Radiation Risk Assessment Calculator Training
IW 3D Direct Ext Exposure to Fixed Settled Dust on Outdoor Surfaces
2D Direct External Exposure to Fixed Contaminated Finite Slabs

- **Exposure route**: external exposure to ionizing radiation.
- **Assume that finite slab (horizontal) is constructed with contaminated materials.**
- **Scenario details**
  - Resident assumed to live in structure built on top of the middle of the slab.
  - Indoor worker assumed to be employed in structure built on top of the middle of the slab.
Res 2D Direct Ext Exposure to Fixed Contaminated Finite Slabs
OW 2D Direct Ext Exposure to Fixed Contaminated Finite Slabs

Superfund Radiation Risk Assessment Calculator Training
IW 2D Direct Ext Exposure to Fixed Contaminated Finite Slabs
2D Direct External Exposure to Settled Dust on Finite Slabs

- **Exposure route:** external exposure to ionizing radiation.
- Assume that dust on finite slab (horizontal) is radioactively contaminated.
- **Scenario details:**
  - Resident assumed to live in structure built on top of the middle of the slab.
  - Indoor worker assumed to be employed in structure built on top of the middle of the slab.
Res 2D Direct External Exposure to Settled Dust on Finite Slabs

Superfund Radiation Risk Assessment Calculator Training
OW 2D Direct External Exposure to Settled Dust on Finite Slabs

Superfund Radiation Risk Assessment Calculator Training
IW 2D Direct External Exposure to Settled Dust on Finite Slabs
Residential State Inputs
PEF Wind Driven

### Particulate Emission Factor Wind Driven

**PEF Wind Equation**

<table>
<thead>
<tr>
<th>Default</th>
<th>City (Climatic Zone) - Selection based on most likely climatic conditions for the site</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>A_c (acres)</td>
</tr>
<tr>
<td>1.36E+09</td>
<td>PEF_w / Wind Particulate Emission Factor (m³/kg)</td>
</tr>
<tr>
<td>93.77</td>
<td>Q/C_{wind} / inverse of the ratio of the geometric mean air concentration to the emission flux at center of a square source (g/m²-s per kg/m³)</td>
</tr>
<tr>
<td>0.5</td>
<td>V / fraction of vegetative cover (unitless)</td>
</tr>
<tr>
<td>4.69</td>
<td>U_m / mean annual wind speed (m/s)</td>
</tr>
<tr>
<td>11.32</td>
<td>U_c / equivalent threshold value</td>
</tr>
<tr>
<td>0.194</td>
<td>R(x) / function dependant on U_m/U_c derived using Cowherd et al. (1985) (unitless)</td>
</tr>
<tr>
<td>16.2302</td>
<td>A (Dispersion Constant)</td>
</tr>
<tr>
<td>18.7762</td>
<td>B (Dispersion Constant)</td>
</tr>
<tr>
<td>216.108</td>
<td>C (Dispersion Constant)</td>
</tr>
</tbody>
</table>
Residential State Inputs

PEF Mechanically Driven for Public Paved Roads

<table>
<thead>
<tr>
<th>PEF Equation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.11 \times 10^7)</td>
<td>(P_{EF_{m-pp}}) / Mechanical Particulate Emission Factor - paved public (m(^3)/kg)</td>
</tr>
<tr>
<td>93.77</td>
<td>(Q/C_w) / inverse of the ratio of the geometric mean air concentration to the emission flux at center of a square source (g/m(^2)-s per kg/m(^3)). Calculated from (A_s) above. (default Minneapolis)</td>
</tr>
<tr>
<td>0.185811027</td>
<td>(F_D) / Dispersion correction factor (unitless)</td>
</tr>
<tr>
<td>315360000</td>
<td>(T) / Time in seconds (calculated from worker ED)</td>
</tr>
<tr>
<td>8760</td>
<td>(t_c) / Time in hours (calculated from worker ED)</td>
</tr>
<tr>
<td>274.2134</td>
<td>(A_R) / Area (m(^2))</td>
</tr>
<tr>
<td>147.5805</td>
<td>(L_R) / Length of road segment (ft); Calculated from (A_s) above.</td>
</tr>
<tr>
<td>0.015</td>
<td>(sL) / Road surface silt loading (g/m(^2))</td>
</tr>
<tr>
<td>11201500000</td>
<td>(A_{KV}) / Annual vehical kilometers per road class (km/yr)</td>
</tr>
<tr>
<td>2821594.655</td>
<td>(\Sigma \text{ VKT}) / Sum of fleet vehicle kilometers traveled during ED (km/yr)</td>
</tr>
<tr>
<td>1786</td>
<td>(k) / km per road class</td>
</tr>
<tr>
<td>3.2</td>
<td>(W) / (mean vehicle weight) tons</td>
</tr>
<tr>
<td>20</td>
<td>(W_R) / Width of road segment (ft)</td>
</tr>
<tr>
<td>4.6</td>
<td>(k_{pp}) / Particle size multiplier for public-paved road (g/VKT)</td>
</tr>
<tr>
<td>0.1317</td>
<td>(C) / Emission factor for fleet exhaust, brake and tire wear</td>
</tr>
<tr>
<td>150</td>
<td>(p) / number of days in a year with at least 0.001 inches of precipitation</td>
</tr>
<tr>
<td>16.2302</td>
<td>(A) (Dispersion Constant)</td>
</tr>
<tr>
<td>18.7762</td>
<td>(B) (Dispersion Constant)</td>
</tr>
<tr>
<td>216.108</td>
<td>(C) (Dispersion Constant)</td>
</tr>
</tbody>
</table>
Site-Specific Inputs

Select Scenario (streets, outside surfaces)
- Resident
- Indoor Worker
- Outdoor Worker
- Composite Worker

Select Media:
- Dust
- 3-D External Exposure
- 2-D External Exposure

Select Result Type
- Defaults
- State
- Site-specific

Select Road Type: Public Paved

Select Isotope Information: Public Paved, Public Unpaved, Industrial Unpaved
### Combined Ingestion and Ground Plane External Exposure

<table>
<thead>
<tr>
<th></th>
<th>Symbol (Description)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>AAF_{r-a} (annual age fraction - resident adult)</td>
<td>unitless</td>
</tr>
<tr>
<td>0.2</td>
<td>AAF_{r-c} (annual age fraction - resident child)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>DL (dose limit)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>ED_{r} (exposure duration - resident)</td>
<td>yr</td>
</tr>
<tr>
<td>350</td>
<td>EF_{r} (exposure frequency - resident)</td>
<td>day/yr</td>
</tr>
<tr>
<td>16.4</td>
<td>ET_{r} (indoor exposure time - resident)</td>
<td>hr/day</td>
</tr>
<tr>
<td>1.752</td>
<td>ET_{o,r} (outdoor exposure time - resident)</td>
<td>hr/day</td>
</tr>
<tr>
<td>1</td>
<td>F_{AM} (area and material factor)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>F_{OFF-SET} (off-set factor)</td>
<td>unitless</td>
</tr>
<tr>
<td>0.4</td>
<td>GSF_{r} (Indoor Gamma Shielding Factor)</td>
<td>unitless</td>
</tr>
<tr>
<td>1</td>
<td>GSF_{o} (Outdoor Gamma Shielding Factor)</td>
<td>unitless</td>
</tr>
<tr>
<td>18</td>
<td>IFA_{r Adj} (age-adjusted dust inhalation rate - resident)</td>
<td>m²/day</td>
</tr>
<tr>
<td>64.5</td>
<td>IFD_{r Adj} (age-adjusted dust ingestion rate - resident)</td>
<td>cm²/day</td>
</tr>
<tr>
<td>0.0</td>
<td>k (dissipation rate constant)</td>
<td>yr⁻¹</td>
</tr>
<tr>
<td>6.67E+08</td>
<td>SLF (Silt Loading Factor)</td>
<td>cm²/kg</td>
</tr>
<tr>
<td>1</td>
<td>t_{r} (time - resident)</td>
<td>yr</td>
</tr>
<tr>
<td>1</td>
<td>ED_{r-a} (exposure duration - resident adult)</td>
<td>yr</td>
</tr>
<tr>
<td>1</td>
<td>ED_{r-c} (exposure duration - resident child)</td>
<td>yr</td>
</tr>
<tr>
<td>4</td>
<td>ET_{r-a,h} (exposure time - resident adult hard surface)</td>
<td>hr/day</td>
</tr>
<tr>
<td>4</td>
<td>ET_{r-c,h} (exposure time - resident child hard surface)</td>
<td>hr/day</td>
</tr>
</tbody>
</table>

Select a slab size ▼ Slab size for ACF

- 1 event/hr
- 9.5 event/hr
- 0.5 FTSS_{h} (fraction transferred surface to skin - hard surface)
- 20 IRA_{r-a} (inhalation rate - resident adult) m³/day
- 10 IRA_{r-c} (inhalation rate - resident child) m³/day
- 45 SA_{r-a} (surface area of fingers - resident adult) cm²
- 15 SA_{r-c} (surface area of fingers - resident child) cm²
- 0.5 SE (saliva extraction factor) unitless

---

**Superfund Radiation Risk Assessment Calculator Training**

**EPA United States Environmental Protection Agency**
Residential SS Inputs (cont.)
Settled Dust – Combined Ingestion & Ground Plane External Exposure

NOTES:
1. $\lambda$ = decay constant
2. When $k = 0.0$, the dissipation term is not included in the calculation to prevent division by zero which would result a PRG of zero.
3. A, B, and C are constants.
4. $ED_r = ED_{r-a} = ED_{r-c} = t_r$
5. $DCF_{d-oral} =$ ingestion dose conversion factor
6. $DCF_{inh} =$ inhalation dose conversion factor
7. $DCF_{d-ext} =$ external exposure dose conversion factor
8. $IFD_{r-adj} =$ age-adjusted ingestion factor
9. $IFA_{y-adj} =$ age-adjusted inhalation factor
10. $L_r = (A_s + 43560)^{0.5}$
Residential SS Inputs
Settled Dust – PEF Wind Driven

PEF Wind Equation

\[
\text{PEF}_w = \frac{Q}{\text{C}_{\text{wind}}} \left( \frac{g}{\text{kg/m}^2} \right) \left( \frac{1}{\text{m}^2} \right) \left( \frac{1}{\text{m}^2} \right) \\
\text{where} \\
\frac{Q}{C_{\text{wind}}} = \frac{1}{2} \exp \left[ \ln \left( \frac{\text{A} \text{(acres) \times \theta}^2}{\text{C}} \right) \right]
\]

Default 
- City (Climatic Zone) - Selection based on most likely climatic conditions for the site
- 0.5 
- \text{A} \text{(acres)}
- 1.36E+09 \text{ PE}_w / Wind Particulate Emission Factor (m}^3/\text{kg)
- 93.77 \text{ Q/C}_{\text{wind}} / inverse of the ratio of the geometric mean air concentration to the emission flux at center of a square source (g/m}^2/\text{s per kg/m}^3)
- 0.5 \text{ V / fraction of vegetative cover (unitless)}
- 4.69 \text{ U}_m / mean annual wind speed (m/s)
- 11.32 \text{ U}_{\text{c}} / equivalent threshold value
- 0.194 \text{ F(x) / function dependant on U}_m/U_{\text{c}} \text{ derived using Cowherd et al. (1985) (unitless)}
- 16.2302 \text{ A (Dispersion Constant)}
- 18.7762 \text{ B (Dispersion Constant)}
- 216.108 \text{ C (Dispersion Constant)}
### Residential SS Inputs

#### Settled Dust – PEF Mechanically Driven for Public Paved Roads

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.11E+07$</td>
<td>$PEF_{mpp}$ / Mechanical Particulate Emission Factor - paved public ($m^3/kg$)</td>
</tr>
<tr>
<td>93.77</td>
<td>$Q/C_w$ / inverse of the ratio of the geometric mean air concentration to the emission flux</td>
</tr>
<tr>
<td></td>
<td>Calculated from $A_p$ above. (default Minneapolis)</td>
</tr>
<tr>
<td>0.185811027</td>
<td>$F_D$ / Dispersion correction factor (unitless)</td>
</tr>
<tr>
<td>31536000</td>
<td>$T$ / Time in seconds (calculated from worker ED)</td>
</tr>
<tr>
<td>8760</td>
<td>$t_c$ / Time in hours (calculated from worker ED)</td>
</tr>
<tr>
<td>274.2134</td>
<td>$A_R$ / Area ($m^2$)</td>
</tr>
<tr>
<td>147.5805</td>
<td>$L_R$ / Length of road segment (ft). Calculated from $A_p$ above.</td>
</tr>
<tr>
<td>3.2</td>
<td>$W$ / (mean vehicle weight) tons</td>
</tr>
<tr>
<td>2821594.655</td>
<td>$\Sigma VKT$ / Sum of fleet vehicle kilometers traveled during ED ($km/yr$)</td>
</tr>
<tr>
<td>1786</td>
<td>km per road class</td>
</tr>
<tr>
<td>20</td>
<td>$W_R$ / Width of road segment (ft)</td>
</tr>
<tr>
<td>4.6</td>
<td>$k_{pp}$ / Particle size multiplier for public-paved road ($g/VKT$)</td>
</tr>
<tr>
<td>0.015</td>
<td>$sL$ / Road surface silt loading ($g/m^2$)</td>
</tr>
<tr>
<td>0.1317</td>
<td>$C$ / Emission factor for fleet exhaust, brake and tire wear</td>
</tr>
<tr>
<td>150</td>
<td>$p$ / number of days in a year with at least 0.001 inches of precipitation</td>
</tr>
<tr>
<td>16.2302</td>
<td>$A$ (Dispersion Constant)</td>
</tr>
<tr>
<td>18.7762</td>
<td>$B$ (Dispersion Constant)</td>
</tr>
<tr>
<td>216.108</td>
<td>$C$ (Dispersion Constant)</td>
</tr>
<tr>
<td></td>
<td># of trips per day * Required</td>
</tr>
<tr>
<td></td>
<td># of days per week the trip is taken * Required</td>
</tr>
<tr>
<td></td>
<td># of weeks per year the site is traveled * Required</td>
</tr>
<tr>
<td></td>
<td>average # of cars per day * Required</td>
</tr>
<tr>
<td></td>
<td>average # of trucks per day * Required</td>
</tr>
<tr>
<td></td>
<td>Tons/car * Required</td>
</tr>
<tr>
<td></td>
<td>Tons/truck * Required</td>
</tr>
</tbody>
</table>
# Residential SS Inputs (cont.)

## 3D – Soil Volume & Ground Plane External Exposure

### Soil Volume and Ground Plane External Exposure

<table>
<thead>
<tr>
<th>3-D Direct External Exposure (1 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D Direct External Exposure (15 cm)</td>
</tr>
<tr>
<td>3-D Direct External Exposure (5 cm)</td>
</tr>
<tr>
<td>3-D Direct External Exposure (ground plane)</td>
</tr>
<tr>
<td>3-D Direct External Exposure (sv)</td>
</tr>
</tbody>
</table>

### 3-D Direct External Exposure

- **Select a sidewalk/street position**
- **Select sidewalk/street position**
- **Select a building height (ft)**
  - 1
  - DL (dose limit) unitless
- **ED_r (exposure duration - resident) yr**
  - 350
- **EF_r (exposure frequency - resident) day/yr**
  - 16.4
- **ET_{ir} (exposure time - resident indoor) hr/day**
  - 1.752
- **ET_{or} (exposure time - resident outdoor) hr/day**

### NOTES:

1. $SF_{ext}$ = soil-volume external exposure slope factor (risk/yr per pCi/g), radionuclide-specific
2. $\lambda$ = decay constant, radionuclide-specific
3. $F_{SURF}$ = Ratio of the surface dose rate to that for an infinite plane source - radionuclide-specific
4. $ED_r = t_r$

---

**EPA**

United States Environmental Protection Agency

Superfund Radiation Risk Assessment Calculator Training
## Residential SS Inputs

### 2D – Soil Volume & Ground Plane External Exposure

<table>
<thead>
<tr>
<th>Soil Volume and Ground Plane External Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2-D Direct External Exposure (1 cm)</strong></td>
</tr>
<tr>
<td><strong>2-D Direct External Exposure (15 cm)</strong></td>
</tr>
<tr>
<td><strong>2-D Direct External Exposure (5 cm)</strong></td>
</tr>
<tr>
<td><strong>2-D Direct External Exposure (ground plane)</strong></td>
</tr>
<tr>
<td><strong>2-D Direct External Exposure (sv)</strong></td>
</tr>
</tbody>
</table>

### NOTES:
1. Equation parameters from 3-D external exposure will be used in addition to slab size
2. ACF - radionuclide-specific
3. Slab size for ACF in 2-D alternate external equation is determined by area selected in dust section above
### SPRG Residential Generic Output

#### Surfaces

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Soil Ingestion DCF (mrem/pCi)</th>
<th>Inhalation DCF (mrem/pCi)</th>
<th>External Exposure DCF (Ground Plane) (mrem/yr per pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>2.29E-05</td>
<td>7.77E-06</td>
<td>2.38E-01</td>
</tr>
</tbody>
</table>

#### Area Correction Factor | Lambda | Halflife (years) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18E-01</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
</tr>
</tbody>
</table>

#### 3D Direct External Exposure

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Soil Volume External Exposure DCF (Infinite Volume) (mrem/yr per pCi/g)</th>
<th>Soil Volume External Exposure DCF (1 cm) (mrem/yr per pCi/g)</th>
<th>External Exposure DCF (Ground Plane) (mrem/yr per pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-40</td>
<td>9.04E-01</td>
<td>1.77E-01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Volume External Exposure DCF (5 cm) (mrem/yr per pCi/g)</th>
<th>Soil Volume External Exposure DCF (15 cm) (mrem/yr per pCi/g)</th>
<th>Soil Volume External Exposure DCF (Ground Plane) (mrem/yr per pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.04E-01</td>
<td>8.21E-01</td>
<td>2.38E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Volume 5cm SDCC (pCi/g)</th>
<th>Soil Volume 15cm SDCC (pCi/g)</th>
<th>Soil Volume Ground Plane SDCC (pCi/cm²)</th>
<th>Soil Volume SDCC (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.95E-01</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>1.71E+01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Volume 5cm SDCC (pCi/g)</th>
<th>Soil Volume 15cm SDCC (pCi/g)</th>
<th>Ground Plane SDCC (pCi/cm²)</th>
<th>Soil Volume SDCC (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.95E-01</td>
<td>5.54E-10</td>
<td>1.25E+09</td>
<td>1.71E+01</td>
</tr>
</tbody>
</table>

---

**Superfund Radiation Risk Assessment Calculator Training**

**EPA United States Environmental Protection Agency**
Radiation Risk Assessment Calculator Training

Section 8: Differences between EPA and DOE tools
Why Does Radiation Easily Fit within the Superfund Framework?

- Primary effect is cancer
- People ingest, inhale, eat, same amount of contaminated dust and food whether it is chemical or radioactive contamination,
- Dust gets resuspended the same whether it is chemically or radioactively contaminated
- Inorganic elements move through the subsurface the same whether they are radioactive or not
RSL, PRG, DCC, Similar Look and Feel

Using the RSL Calculator

Select Scenario
- Resident
- Composite Worker (presented in Generic Tables)
- Construction Worker (RSL only)
- Indoor Worker (RSL only)
- Outdoor Worker (RSL only)
- Fish (RSL only)
- Soil to Groundwater (RSL only)
- Recreator (Site Specific RSL only)

Select Media:
- Soil
- Air
- Tap water

Select SL type:
- Defaults
- Site Specific

Select Risk Output:
- No
- Yes

Select PRG type
- Defaults
- Site specific

Select Risk Output:
- No
- Yes

Select Units
- pcI
- Bq

Using the PRG Calculator

Select Scenario
- Resident
- Farmer
- Soil to Groundwater
- Indoor Worker
- Outdoor Worker
- Composite Worker
- Recreator (Site-specific only)
- Construction Worker – Unpaved Road Traffic (Site-specific only)
- Construction Worker – Wind Erosion and Other Construction Activities (Site-specific only)
- Recreation (Site-specific only)
- Farmer
- Soil to Groundwater

Select Media:
- Soil
- Air
- 2-D External Exposure
- Tap water
- Fish

Select PRG type
- Defaults
- Site specific

Select Risk Output:
- No
- Yes

Select Units
- pcI
- Bq

Using the DCC Calculator

Select Scenario
- Resident
- Composite Worker
- Outdoor Worker
- Indoor Worker
- Construction Worker – Standard Unpaved Road Vehicle Traffic (Site-specific only)
- Construction Worker – Wind Erosion and Other Construction Activities (Site-specific only)
- Recreator (Site-specific only)
- Farmer
- Soil to Groundwater

Select Media:
- Soil
- Air
- 2-D External Exposure
- Tap water
- Fish

Select DCC type
- Defaults
- Site-specific

Select Dose Output:
- No
- Yes

Select Units
- pcI
- Bq

Superfund Radiation Risk Assessment Calculator Training
RSL, PRG, DCC, Consistent Exposure Assumptions

Superfund Radiation Risk Assessment Calculator Training
RSL, PRG, DCC
Consistent treatment of inorganics

- Resuspension – same
- Soil to groundwater – same
- All 3 steady state models. Not depleting source (transfer/dynamic) models
Guidance: World Trade Center (WTC) Benchmark

- Document used to establish $1 \times 10^{-4}$ risk based cleanup levels for the reuse of chemically contaminated buildings after the 9/11 attacks.
- Equations and parameters were the latest EPA chemical methodology.
- Ingestion, inhalation, and dermal
Guidance: World Trade Center (WTC) Benchmark (continued)

- WTC benchmark document includes 1 land use scenario
  - Residential
- This land use includes 2 exposure routes
  - Settled dust
  - Ambient air
Select Differences

◆ Some examples that have come up during site issues
  ▪ Input parameters and default values
  ▪ Steady state vs dynamic/transfer
    • Depleting source in soil
    • Movement of dust through buildings

◆ Not an attempt at any comprehensive analysis of differences, these are issues which have been on sites and/or interagency discussions
Steady State vs Dynamic Transfer

- EPA PRG, DCC, and RSL calculators are steady state models
  - Conservative assumption of no lessening of contaminated source, except radioactive decay
  - This assumption is in early EPA CERCLA risk assessment documents (RAGs, SSG, Rad SSG)
- RESRAD assumes source is depleting from erosion (soil runoff) and leaching into the subsurface
  - Not conservative compared to EPA
Factors Affecting Source Loss

- Mixing layer
- Erosion
- Decay
- Leaching

- Uncontaminated cover
- Contaminated zone
- Unsaturated/saturated zones

Time:
- \( t(0) \)
- \( t(n) \)
Settled Dust & Indoor Air Resuspension

◆ EPA BPRG and BDCC calculators and WTC document
BPRG – Indoor Air

Superfund Radiation Risk Assessment Calculator Training
BPRG – Settled Dust

External Exposure

Ingestion of Dust

Superfund Radiation Risk Assessment Calculator Training
**Source Removal/Injection - Point, Line, Area Sources**

- Source removal and injection treated the same for point, line and area
- Parameters affecting source removal
  - Removable fraction
  - Source lifetime
- Parameters affecting source injection
  - Source lifetime
  - Removable fraction
  - Air fraction
- Source is linearly removed over the source lifetime
  - “Erosion Rate” or removal rate
    - Removable Fraction/ Source Lifetime
    - 20% over 10 years
      - 2% per year
- Radioactive decay occurs simultaneously
Source Injection to Air Pathways

- Models the release of the radionuclides from the source to the air
  - Building renovation
  - Building occupancy

- The airflow in the building will transport the airborne nuclides from room to room

- Nuclides will deposit and will be resuspended

- Pathways considered
  - External
    - Submersion, deposited nuclides
  - Inhalation
  - Ingestion
    - Deposited nuclides
RESRAD-BUILD One Room Air Flow Model

\[ V \frac{dC}{dt} = I - QC - \lambda VC + \lambda VC_p - \lambda_D VC + \lambda_R \lambda_D VC / (\lambda_R + \lambda) \]

- Change of Activity in the room
- Exchange with outside
- Decay of parent in Air
- Resuspension
- Injection Rate
- Decay in Air
- Deposition

Superfund Radiation Risk Assessment Calculator Training
Default Parameters

◆ **EPA.** Inhalation and ingestion parameters and default input values the same for radiation and chemical risk assessment methods.

◆ **DOE.** Uses different parameters and different defaults input parameters for radiation vs chemical risk assessment methods.
  - DOE differs from both EPA radiation and chemical parameters and default input values
  - There is no scientific reason for these differences
    - It was a policy decision by RESRAD developers
PRG and RSL Inhalation

Superfund Radiation Risk Assessment Calculator Training

<table>
<thead>
<tr>
<th>Age Segment (yr)</th>
<th>AF (mg/cm²)</th>
<th>BN (kg)</th>
<th>ED (yr)</th>
<th>EF (day/yr)</th>
<th>ET (hr/event)</th>
<th>IRS (mg/day)</th>
<th>SA (cm²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>0.2</td>
<td>15</td>
<td>2</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>2-6</td>
<td>0.2</td>
<td>15</td>
<td>4</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>6-16</td>
<td>0.07</td>
<td>20</td>
<td>10</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
<tr>
<td>16-25</td>
<td>0.07</td>
<td>20</td>
<td>10</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
<tr>
<td>Child (0-6)</td>
<td>0.2</td>
<td>15</td>
<td>6</td>
<td>350</td>
<td>24</td>
<td>200</td>
<td>2373</td>
</tr>
<tr>
<td>Adult (6-26)</td>
<td>0.07</td>
<td>20</td>
<td>20</td>
<td>350</td>
<td>24</td>
<td>100</td>
<td>6032</td>
</tr>
</tbody>
</table>

Default: City (Climatic Zone) - Selection based on most likely climatic conditions for the site.

- Default: A_c (acres)
- Default: V (fraction of vegetative cover, unitless)
- Default: U_m (mean annual wind speed, m/s)
- Default: U_t (equivalent threshold value, m/s)
- Default: F(x) (function dependent on U_m/U_t, derived using Cowherd et al. (1985), unitless)

**Table:**

- ED, exposure duration - resident yr
- ED_r, exposure duration - resident adult yr
- ED_c, exposure duration - resident child yr
- EF, exposure frequency - day/yr
- EF_r, exposure frequency - resident adult day/yr
- EF_c, exposure frequency - resident adult day/yr
- ET, exposure time - resident hr
- ET_r, exposure time - resident adult hr
- ET_c, exposure time - resident child hr
- GSF, gamma shielding factor - air, unitless
- IFA_age (age-adjusted inhalation factor) m³
- IR, inhalation rate - resident adult m³/day
- IAR, inhalation rate - resident adult m³/day
- IAR_c, inhalation rate - resident child m³/day
- TR, target cancer risk, unitless

**Formulas:**

- PEF (particulate emission factor) m³/kg
- Q/C_w, inverse of the ratio of the geometric mean air concentration to the emission rate (g/m²-s per kg/m³) PEF Selection
- A (Dispersion Constant)
- B (Dispersion Constant)
- C (Dispersion Constant)
- V, fraction of vegetative cover (unitless)
- U_m, mean annual wind speed (m/s)
- U_t, equivalent threshold value (m/s)
- F(x), function dependent on U_m/U_t, derived using Cowherd et al. (1985) (unitless)
RESRAD and RESCHEM

Inhalation

Superfund Radiation Risk Assessment Calculator Training
Superfund Radiation Risk Assessment Calculator Training
Implications

◆ RME exposure defined by EPA through its guidance
  ▪ When using RESRAD, you are protecting a different RME than using EPA guidance

◆ Use of RESRAD results in unnecessary inconsistency how chemicals and radionuclides are addressed at the same site
  ▪ RESRAD differs from EPA’s PRG and RSL, and even with RESCHEM before DOE withdrew RESCHEM
Why is this important?

- EPA cannot defer to states, DOE, DOD, or other entities for remedy selection.
- EPA is a signature on the ROD.
- EPA needs to fully understand what is being said and be able to stand behind it based on the NCP, CERCLA, and EPA guidance.
  - This includes what concentrations constitute meeting the risk range and/or ARARs.
EPA As the Decision Maker (cont.)

- Federal Facilities Disputes ultimately resolved by the EPA Administrator
- Mather AFB/George AFB Dispute by Adm. Carol Browner (April 1993) regarding interpretation of a State standard:
  - “Thus, while state law is applied, the decision is made by EPA, not the state…As the remedial decision is made by EPA the interpretive decision is necessarily EPA’s as well.”
EPA is the Decision Maker

- EPA determines the levels needed for protections and compliance with ARARs and guidance (TBCs)
- EPA needs to be able to justify the level selected.
- EPA’s PRG calculators are recommended for Superfund radiation risk assessments.
  - If another model is to be used, EPA needs to:
    1. run both models
    2. have a thorough understanding of both models
    3. be able to explain the differences.
3 PRG (PRG, BRPG, SPRG) and 3 DCC (DCC, BDCC, and SDCC) calculators are EPA’s recommended models for risk and dose assessment.

Reiterate more strongly that risk assessments (e.g., models used) should be consistent with chemicals at site and with other regional sites.

Don’t use a steady state model for chemical and a transfer/dynamic model for radionuclides:
- Such as using RSL calculator for chemicals then RESRAD for radionuclides.
If EPA regions are considering use of model other than PRG or DCC calculators, for some portion of the risk or dose assessment then they should:

1. Consult with EPA HQ (Stuart Walker)
2. Region should run PRG/DCC calculators and alternative model using PRG/DCC default input parameters
3. Region should have technical justification why alternative model would replace preferred PRG/DCC calculator for some portion of risk/dose assessment
Consistency with Rad and Chem Risk Assessment is Long-standing Policy

◆ EPA Superfund remedial approach to address chemical and radiation risks consistently dates back to the 1990 NCP and guidance of that era.

◆ More recent EPA guidance continues that approach.

◆ Remaining slides in this section will demonstrate that earlier and current EPA guidance are consistent on this matter.
CERCLA risk assessments use RME

◆ In the NCP preamble EPA identified RME (reasonable maximum exposure scenario) as the approach for developing CERCLA risk assessments
  ▪ RME is a mix of average and 95th percentile default input assumptions (see 55 FR 9710, March 8, 1990)
RME based risk assessments are used for compliance with risk range

◆ In the NCP (see 55 FR 9710, March 8, 1990), EPA stated that RME was used to:
  ▪ comply with the 10-4 to 10-6 risk range for all “carcinogenic contaminants” (add chemicals and radionuclides)
  ▪ Develop PRGs at 10-6
EPA 1989 guidance against using different models for rad and chem

In “Risk Assessment Guidance for Superfund (RAGS) Part A” (December 1989), Chapter 10 "Radiation Risk Assessment Guidance,”

- EPA warned that using different risk assessment models for radionuclides and chemicals may result in incompatibilities when trying to sum the risk assessment (see pg. 10-33)

In cases where different environmental fate and transport models have been used to predict chemical and radionuclide exposure, the mathematical models may incorporate somewhat different assumptions. These differences can result in incompatibilities in the two estimates of risk. One important difference often stems from the assumptions regarding the relative mobility of radionuclides and chemicals.
Since 1991 EPA has been developing consistent approaches for chemical and radiation Superfund risk assessments.

EPA 1991 consistent PRGs

◆ RAGS Part B includes PRGs for chemicals and radionuclides that use:
  - Same land uses and similar equations
  - Standard default exposure parameters for RME risk assessments

In general, standardized default exposure equations and parameters used to calculate risk-based PRGs for radionuclides are similar in structure and function to those equations and parameters developed in Chapter 3 for nonradioactive chemical carcinogens. Both types of risk equations:

- Calculate risk-based PRGs for each carcinogen corresponding to a pre-specified target cancer risk level of \(10^{-6}\). As mentioned in Section 2.8, target risk levels may be modified after the baseline risk assessment based on site-specific exposure conditions, technical limitations, or other uncertainties, as well as on the nine remedy selection criteria specified in the NCP.

- Use standardized default exposure parameters consistent with OSWER Directive 9285.6-03 (EPA 1991b). Where default parameters are not available in that guidance document, other appropriate reference values are used and cited.

- Incorporate pathway-specific default exposure factors that generally reflect RME conditions.
Radiation Risk Assessment Calculator Training

Section 9: BCG Calculator

Superfund Radiation Risk Assessment Calculator Training
BCG Outline

◆ Background
◆ Development approach
  ▪ Representative species
  ▪ DCFs
  ▪ CSM
◆ Calculator walkthrough
  ▪ Exposure scenarios
  ▪ Species- and site-specific
BCG Background

- Biota Concentration Guides (BCGs), also known as ecological screening benchmarks, are used in ecological risk assessment at CERCLA sites.
- BCGs are environmental concentrations of radionuclides that would result in an exposure of radiation equal to NOAEL biota dose limits.
  - NOAEL: No Observed Adverse Effect Level
BCG Background – NOAEL

◆ NOAEL: level of exposure at which there is no biologically or statistically significant increase in severity of adverse effects in exposed population.

◆ Critical points: impairment of reproductive capability; alteration of morphology, functional capacity, growth, development, or lifespan;

◆ Does not consider biota risk from mechanisms other than cell death.
BCG Background (cont.)

◆ Develops conservatively protective ecological benchmarks based on cell death.
◆ Protective of populations, not individuals.
◆ Does not address human cancer risk.
◆ Does not address nonradioactive toxicity.
◆ Calculates generic steady-state BCGs. Can also be used to find species- or site-specific BCGs.
Biota Dose Limits

◆ Thresholds of protection:
  ▪ Terrestrial and riparian animals: 1 mGy/day (0.1 rad/day)
  ▪ Aquatic animals: 10 mGy/day (1 rad/day)
  ▪ Aquatic and terrestrial plants: 10 mGy/day (1 rad/day)
Developmental Approach - Selecting a Representative Species

Considerations:
◆ Home range (prefer small)
◆ Susceptibility to ionizing radiation (prefer radiosensitive)
◆ Represent major exposure pathways for aquatic and terrestrial biota
◆ Indigenous to and utilizes evaluation area

◆ Familiarity with general public
◆ Data available from literature or site-specific studies.
◆ Keystone or focal species of ecosystem evaluated.
Developmental Approach – Dose Conversion Factors

◆ External DCFs

- Give dose rates for external exposure per unit concentration of radionuclides in environmental media.
- Only penetrating radiation (photons, electrons) of concern.
- For terrestrial biota, contaminated air is not an important source medium.
Developmental Approach – Dose Conversion Factors

◆ Internal DCFs

- Give dose rates from internal exposure per unit concentration of radionuclides in wet tissue.
- Dose factors calculated as sum of all decay energies and multiplied by appropriate unit conversion factors.
- The default RBE is 20 for exposure to alpha particles.
- Dose factors calculated as Gy/y per Bq/kg of wet tissue.
Developing a Conceptual Site Model

◆ CSM should address the following checklists:
  ▪ Terrestrial Habitat Checklist for
    • Wooded
    • Shrub/scrub
    • Open field
    • Miscellaneous
  ▪ Aquatic Habitat Checklist – non-flowing systems
  ▪ Aquatic Habitat Checklist – flowing systems
  ▪ Wetlands Habitat Checklist
Additional Considerations for Developing a CSM for Biota

◆ Are there potential human health concerns?
◆ Is there potential for future land uses other than those covered by the BCGs?
◆ Are there other likely species not considered in the development of the BCG levels?
◆ Are there unusual site conditions that might make the site attractive for certain species?
BCG Calculator Walkthrough

◆ Source media
  ▪ Water
  ▪ Sediment
  ▪ Soil

◆ Exposure scenarios
  ▪ Riparian animal (living on shore/banks of bodies of water)
  ▪ Terrestrial animal
  ▪ Aquatic animal
  ▪ Aquatic plant
  ▪ Terrestrial plant
Riparian Animal

External Dose Pathways
a = Exposure to radionuclides in sediments
b = Exposure to radionuclides in water
d = Exposure to radionuclides biomagnified through the food web

c = Exposure to radionuclides via ingestion of contaminated vegetation, including water content with dissolved nutrients and minerals
Terrestrial Animal

Internal Dose Pathways

- c = Exposure to radionuclides via ingestion of contaminated vegetation, including water content with dissolved nutrients and minerals
- d = Exposure to radionuclides via ingestion of contaminated food and soil, and via inhalation of soil
- e = Exposure to radionuclides via ingestion of contaminated water

External Dose Pathways

- a = Exposure to radionuclides in soil
- b = Exposure to radionuclides in water
Aquatic Animal

**External Dose Pathways**
- a = Exposure to radionuclides in sediments
- b = Exposure to radionuclides in water

**Internal Dose Pathways**
- c = Exposure to radionuclides via ingestion of contaminated vegetation, including water content with dissolved nutrients and minerals
- d = Exposure to radionuclides biomagnified through the food web
Aquatic Plant

External Dose Pathways
- a = Exposure to radionuclides in sediments
- b = Exposure to radionuclides in water

Internal Dose Pathways
- c = Exposure to radionuclides taken up in water including dissolved nutrients and minerals
Terrestrial Plant

Internal Dose Pathways
b = Exposure to radionuclides taken up in pore water including dissolved nutrients and minerals

External Dose Pathways
a = Exposure to radionuclides in soil

Superfund Radiation Risk Assessment Calculator Training
### Animal Exposure Pathways

<table>
<thead>
<tr>
<th></th>
<th>Aquatic</th>
<th>Riparian</th>
<th>Terrestrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>External: rad in soil</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>External: rad in water</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Internal: ingestion of</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>contaminated vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal: ingestion of</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>contaminated food and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil, inhalation of soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal: ingestion of</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>contaminated water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal: biomagnified</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through food web</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Plant Exposure Pathways

<table>
<thead>
<tr>
<th></th>
<th>Aquatic</th>
<th>Terrestrial</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>External: rad in sediments</strong></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td><strong>External: rad in water</strong></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td><strong>External: rad in soil</strong></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td><strong>Internal: rad taken up in (pore) water, incl. dissolved nutrients and minerals</strong></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Calculator Walkthrough

Select Generic Composite Benchmarks.

- ✔ Sediment Aquatic Animals (generic only)
- ☐ Water Aquatic Animals (generic only)
- ☐ Sediment Aquatic Plants (generic only)
- ☐ Water Aquatic Plants (generic only)
- ☐ Sediment Riparian Animals
- ☐ Water Riparian Animals
- ☐ Soil Terrestrial Plants (generic only)
- ☐ Water Terrestrial Plants (generic only)
- ☐ Soil Terrestrial Animals
- ☐ Water Terrestrial Animals

Select Species-Specific/Site-Specific Benchmarks.

- ☐ Sediment Riparian Animals
- ☐ Water Riparian Animals-carnivorous
- ☐ Water Riparian Animals-herbivorous
- ☐ Soil Terrestrial Animals-carnivorous
- ☐ Soil Terrestrial Animals-herbivorous
- ☐ Water Terrestrial Animals

- ✔ Generic composite benchmarks require input of DL and CF.
- Species-specific and site-specific benchmarks permit more detailed input about diet, physiology, etc.
Calculator Walkthrough (cont.)

- RBE of alpha radiation. Default is 20.
- Units in pCi or Bq.
- Select radionuclides and/or radionuclide decay chains.
BCG Generic Input
Aquatic Animals – Sediment

\[
\text{BCG (sed)}_{\text{aquatic animal}} \left( \frac{\text{pCi}}{\text{g}} \right) = \frac{\text{DL}_{\text{aa}} \left( \frac{\text{rad}}{\text{d}} \right)}{\text{CF}_{\text{aa}} \times \text{DCF}_{\text{ext-sed}} \left( \frac{\text{rad/day}}{\text{pCi/g}} \right)}
\]

Variables with Defaults

1. \( \text{DL}_{\text{aa}} \) = Target Dose Limit - terrestrial animal (rad/day)
2. \( \text{CF}_{\text{aa}} \) = Area/Residence Time Correction Factor (unitless)
BCG Site/species-specific Input
Sediment Riparian Animals

\[
\text{BCG (sed)}_{\text{riparian animal}} \left( \frac{\text{pCi}}{\text{g}} \right) = \\
\text{DL}_{\text{ra}} \left( \frac{\text{rad}}{\text{d}} \right) \\
\left[ \frac{1}{f_1} \times f \times r \times \left( 1 - e^{-\left( k_{\text{rad}} \left( \frac{1}{\text{d}} \right) + k_{\text{bio}} \left( \frac{1}{\text{d}} \right) \right) \times 365.25 \left( \frac{\text{d}}{\text{yr}} \right) \times T} \times \text{DCF}_{\text{int}} \left( \frac{\text{rad/day}}{\text{pCi/g}} \right) \right] \\
\times \text{DCF}_{\text{ra}} \\
\left[ k_{\text{rad}} \left( \frac{1}{\text{d}} \right) + k_{\text{bio}} \left( \frac{1}{\text{d}} \right) \right] \times M (\text{kg}) \\
+ \left[ \text{DCF}_{\text{ext-sed}} \left( \frac{\text{rad/day}}{\text{pCi/g}} \right) \right] \\
\text{where:} \\
T = \text{Lifespan of Organism (yr)} = C_L \times M (\text{kg})^{b_L} \\
r = \text{Food Intake Rate (kg/d)} = 10^{-3} \times \left( \frac{a}{d \times c} \right) \times 70 \times M^{b_i}
\]
BCG Site/species-specific Input
Sediment Riparian Animals

Variables with Defaults

1. $D_{L_{ra}}$ = Target Dose Limit - riparian animal (rad/day)
2. $C_{F_{ra}}$ = Area/Residence Time Correction Factor (unitless)
3. $f$ = Fraction of Daily Diet coming from Sediment (unitless) [Recommended Range: 0.01 - 0.55]
4. $a$ = Ratio of Active of Maintenance Metabolic Rate to the Basal Metabolic Rate (unitless) [Recommended Range: 0.5 - 3.0]
5. $d$ = Fraction of Energy Ingested that is Assimilated and Oxidized (unitless) [Recommended Range: 0.3 - 0.9]
6. $c$ = Caloric Value of Food (kcal/g) [Recommended Range: 4 - 9]
7. $M$ = Live Body Weight (kg) [Recommended Range: 0.02 - 6000]
8. $b_i$ = Exponent in allometric relationship detailing consumption as a function of body mass (unitless) [Recommended Range: 0.68 - 0.8]
9. $C_L$ = Constant detailing lifespan as a function of body mass (unitless) [Recommended Range: 0.9 - 2.0]
10. $b_L$ = Exponent detailing lifespan as a function of body mass (unitless) [Recommended Range: 0.25 - 0.33]
# BCG Generic Calculator Output

## Aquatic Animals – Sediment

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Decay Energy (MeV)</th>
<th>Total Alpha</th>
<th>$k_{rad}$</th>
<th>$k_{bio-sdra}$</th>
<th>$k_{bio-swra}$</th>
<th>$k_{bio-swrah}$</th>
<th>$k_{bio-sotac}$</th>
<th>$k_{bio-sotah}$</th>
<th>$k_{bio-swta}$</th>
<th>$f_1$</th>
<th>$B_{aa}$</th>
<th>$B_{ap}$</th>
<th>$B_{ra}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-14</td>
<td>0.0495</td>
<td>0</td>
<td>3.3119E-7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$L_P^{rad}$</th>
<th>$L_P^{soil}$</th>
<th>$L_P^{tp}$</th>
<th>$L_P^{water}$</th>
<th>Sediment External DC (rad/d per pCi/g)</th>
<th>Water External DC (rad/d per pCi/L)</th>
<th>Soil External DC (rad/d per pCi/g)</th>
<th>Internal DC (rad/d per pCi/g)</th>
<th>Default Sediment BCG for Aquatic Animals (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.27E-06</td>
<td>1.27E-09</td>
<td>2.53E-06</td>
<td>2.54E-06</td>
<td>7.89E+05</td>
</tr>
</tbody>
</table>
Species-specific and Site-specific

◆ Examine internal exposure pathways in greater detail.

◆ Generic equations estimate internal tissue concentrations using lumped parameters from measurements of contamination in environmental media.

◆ Alternative approach is kinetic/allometric:
  ▪ Fills in data gaps from lumped parameters
  ▪ Provides more sophisticated method for evaluating dose.
Radiation Risk Assessment Calculator Training

Section 10: CPM Calculator
CPM Background

◆ Counts per minute is a measure of radioactivity: number of atoms in a given quantity of radioactive material that are detected to have decayed in 1 minute.

◆ Similar to DPM (or DPS), but the efficiency of the radiation detector must be accounted for in CPM.

◆ CPM vs. DPM: number of atoms measured to have decayed vs. number of atoms that have decayed.
CPM Background

◆ Field screening tool.
◆ Helps equate detector measurement in CPM to a remedial level in pCi/cm² or pCi/g given in ARAR, PRG, or DCC.
◆ No current EPA guidance on correlating CPM field reading with risk, dose, or ARAR-based concentrations.
CPM Background

◆ Intended to facilitate use of real-time measurement techniques to *supplement* sampling.
◆ **Not** to replace sampling.
CPM Calculator Scenarios

◆ 3 major sub-calculators
  ▪ Ground-based scanning of surface contamination
  ▪ Ground-based scanning of volumetric contamination
  ▪ Air-based scanning of contamination (under consideration)
CPM Model Assumptions

◆ Only addresses gamma emitters.
  ▪ Alpha and beta rad omitted because field measurements are difficult.
  ▪ Nuclides w/gamma yield <0.1% omitted.
  ▪ Only uses primary gamma particle.

◆ Does addresses ingrowth of daughters.
  ▪ Daughter radionuclides included in output.
CPM Model Assumptions

◆ Uniform contamination.
◆ Source surface free from all substances (oil, moisture, etc.)
◆ Background radiation not considered.
◆ Omits shielding factors.
◆ Backscatter or buildup in surface not accounted for.
Goal detector response is the total calculated response of the detector in cpm for the desired remedial activity of the particular radionuclides in soil.

MARSSIM equation is used to find the goal detector response:

\[
\text{Goal Detector Response} = \frac{1}{\frac{\text{ratio}_1}{C_{r,1}} + \frac{\text{ratio}_2}{C_{r,2}} + \ldots + \frac{\text{ratio}_n}{C_{r,n}}}
\]
CPM Calculator Walkthrough

Using the Area CPM Calculator

I have read and understand the limitations of this model set forth in the User Guide and FAQ.

<table>
<thead>
<tr>
<th>Radionuclides (and daughter progeny)</th>
<th>Radionuclides of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-223</td>
<td></td>
</tr>
<tr>
<td>Ac-224</td>
<td></td>
</tr>
<tr>
<td>Ac-225</td>
<td></td>
</tr>
<tr>
<td>Ac-226</td>
<td></td>
</tr>
<tr>
<td>Ac-227</td>
<td></td>
</tr>
<tr>
<td>Ac-228</td>
<td></td>
</tr>
<tr>
<td>Ac-229</td>
<td></td>
</tr>
<tr>
<td>Ag-102</td>
<td></td>
</tr>
<tr>
<td>Ag-103</td>
<td></td>
</tr>
<tr>
<td>Ag-104</td>
<td></td>
</tr>
<tr>
<td>Ag-104m</td>
<td></td>
</tr>
<tr>
<td>Ag-105</td>
<td></td>
</tr>
<tr>
<td>Ag-106</td>
<td></td>
</tr>
<tr>
<td>Ag-106m</td>
<td></td>
</tr>
<tr>
<td>Ag-108</td>
<td></td>
</tr>
<tr>
<td>Ag-108m</td>
<td></td>
</tr>
</tbody>
</table>

Include daughter products (Recommended)

m = metastable state
n = second metastable state
nat = naturally occurring

Reset  Next
CPM Calculator Walkthrough

**Using the Area CPM Calculator**

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Field Activity Concentration (pCi/cm²)</th>
<th>Target Activity Concentration (pCi/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-243</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Br-80</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>U-233</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

**Counts Per Minute (CPM)**

**Using the Area CPM Calculator**

- **Select Detector size**: 0.5 x 1
- **Enter distance between detector and surface (cm.)**: 0.5 x 1, 1 x 1, 2 x 2, 3 x 3
Gross Detector Response (GDR) is the instrument reading that must be achieved in order to meet the target activity entered by the user. A Field or Target Activity (CPM) result of "-" indicates that no photons are generated by the radionuclide’s decay chain and thus cannot be detected by a gamma scintillation detector. Radionuclides with 0 photons do not contribute to the total GDR. This tool only works for gamma emitters.
CPM Calculator Walkthrough

Using the Volume CPM Calculator

I have read and understand the limitations of this model set forth in the User Guide and FAQ.

![Radionuclides and Radionuclides of Interest Table]

Include daughter products (Recommended)

- \( m \) = metastable state
- \( n \) = second metastable state
- \( nat \) = naturally occurring

[Reset]  [Next]
# CPM Calculator Walkthrough

**Using the Volume CPM Calculator**

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Field Activity Concentration (pCi/g)</th>
<th>Target Activity Concentration (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-243</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Br-80</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>U-233</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>
Using the Volume CPM Calculator

**Input and calculation parameters**

<table>
<thead>
<tr>
<th>Radiouclide</th>
<th>Daughter</th>
<th>Fractional Activity of Parent</th>
<th>Number of Photons</th>
<th>Field Activity (pCi/g)</th>
<th>Target Activity (pCi/g)</th>
<th>Field Activity (CPM)</th>
<th>Target Activity (CPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-243</td>
<td>Np-239</td>
<td>1.000E+00</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1390</td>
<td>139</td>
</tr>
<tr>
<td>Br-80</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>397</td>
<td>40</td>
</tr>
<tr>
<td>U-233</td>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Gross Detector Response for user supplied detector parameters**

<table>
<thead>
<tr>
<th>Source Material</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Depth</td>
<td>100 cm.</td>
</tr>
<tr>
<td>Detector Size</td>
<td>0.5 x 1</td>
</tr>
<tr>
<td>Detector Height</td>
<td>10 cm.</td>
</tr>
</tbody>
</table>

**Gross Detector Response (CPM)** 89
Calculator Links

◆ PRG: http://epa-prgs.ornl.gov/radionuclides/
◆ DCC: http://epa-dccs.ornl.gov/
◆ SPRG: http://epa-sprg.ornl.gov/
◆ SDCC: http://epa-sdcc.ornl.gov/
◆ BPRG: http://epa-bprg.ornl.gov/
◆ BDCC: http://epa-bdcc.ornl.gov/
◆ SADA: http://www.sadaproject.net/
Radiation Risk Assessment Calculator Training

Section 11: RVISL
What does the RVISL do?

◆ The RVISL calculator output provides comparison values for residential and commercial/industrial exposures to radons (Rn-219, Rn-220, and Rn-222) in soil gas, air, and groundwater

◆ Output provides risk estimates for residential and commercial/industrial exposures to radon in soil gas, air, and groundwater
RVISL Scope

◆ Developed to provide concentrations of radons in soil and groundwater that will not result in radon intrusion into buildings that exceed target levels
◆ Indoor radon/thoron target level concentrations based on:
  » Risk (default to $1 \times 10^{-6}$)
  » UMTRCA correspond to 0.02 Working Levels (Rn-220 and 222 only)
  » Dose (default to 1 mrem/yr)
  » Potential State 4 pCi/l standard
RADON GETS IN THROUGH:

1. Cracks in solid floors.
2. Construction joints.
3. Cracks in walls.
5. Gaps around service pipes.
6. Cavities inside walls.
7. The water supply.
RVISL: Conceptual model

- Same as VISL conceptual model for chemicals

- Assumes a groundwater or vadose zone of vapors that diffuse upwards through unsaturated soils toward the surface and into buildings

- Soil is relatively homogeneous and isotropic
  - Horizontal layers of different soil types can be used
RVISL: Conceptual model, cont.

- Receptors are occupants in buildings with concrete foundation
  » Resident or Workers

- Subsurface and building characteristics reduce or attenuate radon concentrations
RVISL: Site-Specific Adjustments

» Users should consider whether assumptions underlying generic conceptual model are applicable at each site
  » Use professional judgement to make adjustments based on site-specific information
RVISL: Site-Specific Adjustments, cont.

- Factors that may result in unattenuated or enhanced transport of radon, and render default RVISL generic defaults inappropriate, include:
  - Very shallow groundwater (e.g., depth to water <5 feet)
  - Shallow soil contamination source (e.g., within few feet of foundation)
  - Buildings with significant openings to the subsurface (e.g., sumps, unlined crawlspaces, earthen floors) or significant preferential pathways
Draft Radon Vapor Intrusion Screening Level Calculator Home Page (March 2019)

Radon Vapor Intrusion Screening Levels (RVISL)
- Home Page
- User's Guide
- What's New
- Frequent Questions
- Equations
- RVISL Calculator
- Generic Tables
RVISL – User Guide


Welcome to the EPA's Radon Vapor Intrusion Screening Level (RVISL) Calculator User's Guide for Radionuclide Contaminants at Superfund Sites. Here you will find descriptions, equations and default exposure parameters used to calculate cancer risk and dose-based RVISLs. Additional guidance is also provided on sources of parameters and proper RVISL use. It is suggested that users read the RVISL FAQ page before proceeding. The user guide is extensive so please use the "Open All Sections" and "Close All Sections" links below as needed. Individual sections can be opened and closed by clicking on the section titles. Before proceeding through the user's guide please read the Disclaimer.

This tool provides screening level concentrations of radon for groundwater, soil gas (sub-slab and exterior), and indoor air to assist Agency staff with making a radon vapor intrusion screening level (RVISL) determination based on limited, initial data. In addition to calculating screening levels, this tool can calculate indoor air concentrations from radon in soil gas and groundwater concentrations entered by the user. The cancer risk and dose from calculated indoor air concentrations and user-provided indoor air concentrations can also be calculated. The equations for these features are presented in the following sections. Note that for Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remedial actions, dose assessment is generally done only to show compliance with a dose-based Applicable or Relevant and Appropriate Requirement (ARAR). In addition, the calculator presents the option to compare the indoor air concentration, entered by the user or derived from groundwater or soil gas activities, to state standards or Uranium Mill Tailings Radiation Control Act (UMTRCA) standards which also may be potential ARARs.

Disclaimer

1. Understanding the RVISL Website
2. Radon Vapor Intrusion Screening Level Equations
3. Indoor Air Concentration, Cancer Risk, and Dose Calculation Equations
4. Modifications of Standard Equations
5. Recommended Default Exposure Parameters
6. References

Contact Us to ask a question, provide feedback, or report a problem.
Hover over any form section for instructions about the individual selection and requirements.

Select Target Risk

- 10-
- 10^2
- 10^3
- Other

Select Exposure Scenario

- Resident
- Commercial Worker

Predict indoor air concentrations, and risk, from measured media concentrations?

- No
- Yes

Select Screening Level Type

- Defaults
- Site Specific

Select Preferred Units

- pCi
- Bq

Groundwater Temperature (°C)

25

Attenuation Factor Sub-Slab (unitless)

0.03 For sub-slab soil gas, the recommended generic attenuation factor (α_{ss}) is 0.03.

Attenuation Factor Groundwater (unitless)

0.001 For groundwater, the recommended generic attenuation factor (α_{gw}) is 0.001.
RVISL - Scenarios (Resident)
RVISL - Scenarios (Indoor Worker)

Superfund Radiation Risk Assessment Calculator Training
Spatial Analysis & Decision Assistance

- SADA project engages research and development at the nexus of geospatial analytics, risk assessment, and decision analysis.
- Goals are to embed risk assessment (environmental, decision, etc.), uncertainty modeling, and downstream decision processes entirely within a spatial context.
- Two lanes define project activities
  - Advancing methods in a variety of areas particularly well connected to environmental regulatory community, characterization, remediation, RCRA, Superfund, MARSSIM etc.
  - Freeware desktop application (SADA) integrating environmental risk analytics, spatial modeling, and decision sciences.
Questions That SADA Addresses

- What exposure scenarios are likely dangerous?
- What contaminants are driving the risk?
- What pathways (ingestion, inhalation, etc)?
- What is the risk or concentration limit for an exposure time of 30 years?, 1 day? 1 hour?
- Where is exposure unsafe? Who might be in harms way? How sure are we?
- Where should we apply risk mitigation measures?
- Where and what type of additional information would support the model?
- What are our decision risks?
Answers that SADA V5&6 Provide

Traditionally, risk was used in an all or nothing decision.
SADA integrates spatial modeling with risk-based decision making. Contaminants and plume spatial uncertainty are propagated through the risk model.

SADA uses spatially enabled risk-based decision making to offer better choices to stakeholders and quantifying uncertainty in the final decision.

Cost/Benefit Analytics

Built on risk-space models

Permit what if’s

Quantify cost and decision risk reduction

Secondary Sample Designs

Sample where model needs most support....

Radiation Risk Assessment Calculator Training
How SADA Version 5 Looks
Version 6 Inputs

Superfund Radiation Risk Assessment Calculator Training
SADA Risk and PRG results
SADA Version 6

- Modern GIS infrastructure
- Advanced 3D visualization and scene creation
SADA Version 6

Superfund Radiation Risk Assessment Calculator Training
Thank You for Participating

◆ Contact: Stuart Walker
  ▪ walker.stuart@epa.gov
  ▪ (703) 603-8748

◆ Additional Resources
  ▪ Calculator Links (next slide)
  ▪ ITRC: http://www.cluin.org/conf/itrc/radsdd/resource.cfm
Radiation Outline

- Definitions/background
- Toxic effects
- Types of radiation
- Radiation Concepts and Units
- Decay products
- Decay chains
- Transfer and accumulation
- Common radionuclides
Background

- The primary stressor from radiological contamination is ionizing radiation resulting from the decay of unstable isotopes that have been released to the environment.
Ionizing Radiation

- Either particle or electromagnetic radiation
- Individual particles/photons carry enough energy to ionizing atoms by removing an electron from orbit.
 Ionizing Radiation

• Ionized atoms/molecules can become free radicals, oxidants, and other highly reactive molecules.
• Can damage living tissue through DNA damage and mutation.
• Carcinogen, mutagen, and teratogen.
Toxic Effects

- Primarily effects at cellular level, rather than organ level.
- Possible outcomes of toxic effects.
  - Cells experience DNA damage; able to detect and repair the damage.
  - Cells experience DNA damage; unable to repair the damage. Cells go through programmed cell death, eliminating the potential genetic damage from the larger tissue.
  - Cells experience a nonlethal DNA mutation that is passed on to subsequent cell divisions. This mutation may contribute to the formation of a cancer.
- Cells and organisms can repair a limited amount of radiation damage.
Types of Radiation

- Alpha particles (α)
- Beta particles (β)
- Gamma rays (γ)
Alpha radiation:

- Consists of two protons and two neutrons bound together; helium atom stripped of electrons. \( ^4_2\text{He}^{2+} \)
- Highly ionizing
- Low penetration, but highly destructive.
- Not considered dangerous unless ingested or inhaled.
- Not a significant source of risk in external dose pathways because of low penetration power.
- Primary source of risk in internal dose pathways.
Beta radiation

- High-speed, charged particles (electrons)
- Moderate penetrating power
  - Can penetrate skin
  - Require thin shielding (thin metal, clothes)
- Can enter body through ingestion, inhalation, unprotected open wounds, lens of eye
Gamma radiation

- Emission of electromagnetic radiation from nucleus.
- High-frequency, low wavelength
- High penetrating power
  - Penetrates deeply into tissue and damages internal organs.
  - Can travel long distances in air.
Radionuclides – Source of Ionizing Radiation

• A **radionuclide** is an atom with an unstable nucleus.
• The radionuclide can undergo radioactive decay and emit gamma rays and/or subatomic particles. These particles and rays constitute ionizing radiation.
Radionuclides

- A radionuclide will normally exhibit all the usual chemical characteristics of that atom/molecule.
  - Molecules that exhibit chemical toxicity will need to be addressed through standard risk assessment methods as well as the method used for ionizing radiation.
  - Fate and transport of radionuclides in the environment is generally determined by chemical properties, rather than isotopic properties.
Activity

- Transformation (or disintegration, or decay) rate of a radioactive substance.
- Measured in disintegrations per second (dps).
- Units
  - 1 Becquerel (Bq) = 1 dps
    - SI unit
  - 1 Curie (Ci) = 3.7 x 10^{10} dps = 3.7 x 10^{10} Bq
    - Usually use pCi. 1 pCi = 1 x 10^{-12} Ci
Absorbed Dose

- Energy imparted by radiation onto an absorbing material, or energy deposited per unit mass.
- Also known as Total Ionizing Dose (TID)
- Not a good indicator of biological effect because it does not account for RBE of different types of radiation.
- Units
  - 1 Gray (Gy) = 1 J/kg (SI unit)
  - 1 rad = 100 Gy (obsolete unit)
Dose Equivalent

- Dose in terms of its biological effect.
- \( DE = \text{absorbed dose} \times W_R \)
- \( W_R = N \times Q \)
  - \( Q \) (quality factor) = RBE
    - \( Q = 1 \) for gamma, x-ray, and beta radiation
    - \( Q = 20 \) for alpha radiation
  - \( N \) – product of other multiplying factors
    - Depends on organ type, time and volume over which dose is spread, and species.
Dose Equivalent (cont.)

• The effectiveness of radiation in producing tissue damage is related to linear energy transfer (LET).
  – Greater LET indicates greater effectiveness of radiation in producing tissue damage.

• Units
  – Sievert (Sv) – same units as Gray
    • SI unit
  – 1 rem (Roentgen equivalent man) = 100 Sv
    • Obsolete unit
Exposure

• Ability of radiation to ionize air and create electric charges.

• Units
  – 1 Roentgen (R) = amount of radiation required to liberate positive and negative charges of 1 esu from 1 cm$^3$ of dry air at STP
    • $1 \text{ R} = 2.58 \times 10^{-4} \text{ C/kg air}$
The decay product (Np-237) is called a daughter product, daughter isotope or daughter nuclide.
Decay Products

• **Alpha:** subtract the $^4_2\text{He}^{2+}$ particle:
  - Atomic mass decreases by 4 amu.
  - Atomic number decreases by 2.

• **Beta:**
  - Atomic mass does not change.
  - Atomic number increases by 1 as a neutron is transmuted to an additional proton.

• **Gamma:**
  - Atomic particles are not emitted.
  - Atomic mass and number do not change.
Decay Chains

- Most radioactive elements do not decay directly to a stable state, but rather undergo a series of decays until a stable isotope is reached.
- A parent isotope decays to form a daughter isotope. The daughter may be stable, or can decay to form a daughter isotope of its own.
Decay Chains in Calculator

- Risk/dose coefficients are provided for several different decay chains for individual radionuclides. They factor in the decay energies for the parent isotope and subsequent daughter isotopes.
  - +D: 100-yr environmental commitment period
  - +E: 1000-yr environmental commitment pd.
  - +pD: Partial inclusion of daughters. When a long-lived daughter in decay chain is reached, the summing of decay energies are stopped.
Transfer and Accumulation

Exposure to ionizing radiation generally does not cause ambient media or biological tissues to become radioactive. This occurs through the transfer and accumulation of radionuclides that are the source of ionizing radiation.

Ionizing radiation is sometimes used to sterilize food and medical equipment.
Additivity of Exposure

• The absorbed dose (or dose rate) of ionizing radiation from all radionuclides, in all media, should be added together.

• Dose conversion factors (DCFs) are used to account for differences in ionizing energy and exposure.

• The safe exposure levels or Biota Dose Limits that have been established are based on the total absorbed dose of ionizing radiation.
Common Radionuclides

Some radionuclides commonly found at Superfund sites:

- Americium-241
- Cesium-137
- Cobalt-60
- Iodine-129, 131
- Plutonium-239, 240, 241
- Radium-226, 228
- Radon-220, 222
- Strontium-90
- Technetium-99
- Thorium-230, 232
- $^{3}$H (Tritium)
- Uranium-234, 235, 238
Radiation Risk Assessment Calculator Training

Section 14: Radiation Risk Assessment Basics

Superfund Radiation Risk Assessment Calculator Training
Basis of Radiological Risk Assessments

- Ionizing radiation is a carcinogen, a mutagen, and a teratogen.
- Cancer risks are usually the most harmful, so most assessments of harmful effects only consider carcinogenic effects.
- Risks from radiological exposure are generally estimated in a manner similar to exposures to chemical contaminants.
- Total incremental lifetime cancer risk from radiation exposure = sum of risks from all radionuclides in all exposure pathways.
Risk Approach

- Risk = exposure x cancer slope factor
- Exposure: estimated lifetime intake or external exposure (in Roentgen units)
- CSF: estimate of the probability of response; i.e. the probability of an individual developing cancer per unit intake.
  - CSF takes intake, uses set of assumptions and calculates absorbed dose.
  - Dose is compared to human exposure/cancer data and a risk of cancer is assigned.
Dose Approach

• Dose = exposure x dose conversion factor
• DCF: assigns a unit dose for every unit exposure. Based on an annual exposure to radiation.
• DCFs depend on:
  – Type of radiation
  – Relative strength of radiation
  – Target organs and tissues
  – Cancer induction rates
Dose Definitions

• **Absorbed dose**: expression of energy imparted per unit mass of tissue. Units: rad, Gray (Gy). 1 Gy = 1 J/Kg = 100 rads.

• **Dose equivalent** (DE): measure of the energy absorbed by living tissue, adjusted by the quality factor of different types of radiation. Units: rem, Sievert (Sv). 1 Sv = 100 rems.
Dose Definitions (cont.)

- **Effective Dose Equivalent (EDE):** DE adjusted by organ-based weighting factors to provide a risk-based equivalence to external radiation dose.

- **Committed Effective Dose Equivalent (CEDE):** EDE summed over projected 50-yr exposure from internal radiation.

- **Total Effective Dose Equivalent (TEDE) = EDE (external) + CEDE (internal)**
Example: Inhalation Pathway

- Risk =
  \[(\text{Inhalation slope factor}) \times (\text{radionuclide concentration in air}) \times (\text{breathing rate}) \times \text{exposure duration}\]

- Dose =
  \[(\text{DCF}) \times (\text{radionuclide concentration in air}) \times (\text{breathing rate}) \times (\text{exposure duration})\]
# Risk and Dose Approaches

<table>
<thead>
<tr>
<th>Risk</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used by EPA.</td>
<td>Used by NRC and DOE.</td>
</tr>
<tr>
<td>Approach: cleanup of sites to a particular cancer risk</td>
<td>Approach: safe dose that protects workers and public from ongoing nuclear operations on site.</td>
</tr>
<tr>
<td>Lifetime exposure to an individual with a RME (EPA)</td>
<td>Annual exposure to an average member of critical group</td>
</tr>
<tr>
<td>Risk is unitless measurement of likelihood of an adverse effect.</td>
<td>Dose equivalent is measured in units of rem, mrem, or sievert.</td>
</tr>
</tbody>
</table>
## Basis for Risk and Dose Approaches (cont.)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards expressed in terms of risk (e.g. CERCLA 10-4 to 10-6 range)</td>
<td>Standards expressed in terms of dose equivalent (e.g. NRC 25 mrem/year)</td>
</tr>
<tr>
<td>CSFs based primarily on US population.</td>
<td>DCFs based on populations from other nations.</td>
</tr>
<tr>
<td>Age- and sex-dependent risk models in CSFs</td>
<td>Age-dependent DCFs</td>
</tr>
<tr>
<td>CSFs do not consider genetic risk</td>
<td>DCFs consider genetic risk</td>
</tr>
</tbody>
</table>

Standards expressed in terms of risk (e.g. CERCLA 10-4 to 10-6 range) are compared to standards expressed in terms of dose equivalent (e.g. NRC 25 mrem/year). CSFs (Characterization Standards) are based primarily on the US population, whereas DCFs (Dose Conversion Factors) are based on populations from other nations. CSFs consider factors such as age and sex dependent risk models, whereas DCFs also consider genetic risk.
### Basis for Risk and Dose Approaches (cont.)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Considers causes of death other than rad-induced cancer.</td>
<td>Does not consider other competing causes of death.</td>
</tr>
<tr>
<td>Low-LET and high-LET estimates considered separately for each target organ.</td>
<td>DE includes both low-LET and high-LET rad multiplied by appropriate RBE factors</td>
</tr>
</tbody>
</table>
| RBE for most sites = 20  
RBE for breast = 10  
RBE for leukemia = 1 | RBE for alpha rad, all sites = 20 |
### Basis for Risk and Dose Approaches (cont.)

<table>
<thead>
<tr>
<th>Risk</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimates of absorbed dose to 16 target organs/tissues, considered for 13 specific cancer sites, plus residual risk</td>
<td>Effective dose considers dose estimates to 12 target organs plus average of 10 other organs</td>
</tr>
<tr>
<td>Lung dose based on weighted sum of absorbed dose to tracheobronchial (80% weight) and pulmonary regions (20%)</td>
<td>Lung dose based on average dose to total lung (tracheobronchial, nasopharyngeal, and pulmonary regions)</td>
</tr>
<tr>
<td>Variable length to integration period (&lt;110 years). Depends on organ-specific risk models and considerations of competing risks.</td>
<td>Fixed length of 50 years for integration period</td>
</tr>
</tbody>
</table>
Basis for Risk and Dose Approaches (cont.)

- **Reasonable maximum exposure (RME):** highest exposure that is reasonably expected to occur at a site; resulting from a combination of all intake variables.

- **Average member of critical group:** the group of individuals reasonably expected to receive the greatest exposure to residual radioactivity for any applicable set of circumstances.
Summary: Risk vs Dose

- EPA believes that the SF method produces a more reliable estimate of risk.
- Most national and international guidelines/standards for rad protection are in terms of dose or concentration.
  - Most standards are concerned w/radiological doses. No need to calculate associated risk – simply compare the dose to an appropriate dose-based standard.
Summary: Risk vs Dose (cont.)

- Dose can be converted into risk and vice versa using a probability coefficient.
  - Risk = total dose x probability coefficient (risk/unit dose)
  - Fed Guide 13: $8.46 \times 10^{-4}$/rem

- EPA believes that DCFs are **NOT** adequate for assessing risks, especially from internal exposure to alpha- and beta-emitting radionuclides.
Updates to Dose Equivalent Approach

• Most standards are based on DCFs in ICRP Publications 26/30 (1979)
• Revised DCFs in ICRP Publication 72 (1996).
  • Based on additional scientific data
  • More applicable to general public
  • Correspond to current cancer slope factors
• 2014 ORNL DCFs based on ICRP 107.
Updates to Slope Factor Approach

• Old slope factors issued in 2001
• Based on updated and improved radiation risk coefficients in Federal Guidance Report No. 13 (EPA 1999) and ICRP Publication 72.
• Updated risk coefficients are based on developments in radiation risk and dosimetry.
• New Slope Factors issued in 2014 from ORNL based on ICRP 107.
Updates to Slope Factor Approach (cont.)

- Changes to Slope Factors (ORNL 2014) include:
  - Cancer risk model updated
  - Biokinetic and dosimetry models
  - External dosimetry models
  - Exposure pathways expanded
  - Population group now based on average member of general public (vs. adult worker)